[en] Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of a catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 ?C and high thermal stability with a degradation temperature of 300 ?C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2=0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.36 V for catechol homopolymer, to 0.56 V for catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion– polymer battery was demostrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs Li+/Li), excellent rate performance (up to 120 C) and high capacity retention after cycling (74% after 800 cycles).
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Galastegui, Antonela; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
Minudri, Daniela; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
Casado, Nerea; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Goujon, Nicolas; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Ruipérez, Fernando; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Patil, Nagaraj; Electrochemical Processes Unit, IMDEA Energy, Madrid, Spain
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Marcilla, Rebeca; Electrochemical Processes Unit, IMDEA Energy, Madrid, Spain
Mecerreyes, David; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Language :
English
Title :
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
Publication date :
01 August 2020
Journal title :
Sustainable Energy & Fuels
eISSN :
2398-4902
Publisher :
RSC
Volume :
4
Issue :
8
Pages :
3934-3942
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 823989 - IONBIKE - IONGELS: FROM NEW CHEMISTRY TOWARD EMERGING APPLICATIONS
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union EC - European Commission
S. Muench A. Wild C. Friebe B. Haupler T. Janoschka U. S. Schubert Chem. Rev. 2016 116 9438
J. Winsberg T. Hagemann T. Janoschka M. D. Hager U. S. Schubert Angew. Chem., Int. Ed. 2016 56 686
K. Oyaizu H. Nishide Conjugated Polymers 2019 587
K. Hatakeyama T. Nagano S. Noguchi Y. Sugai J. Du H. Nishide K. Oyaizu ACS Appl. Polym. Mater. 2019 1 188
R. Emanuelsson M. Sterby M. Stromme M. Sjodin J. Am. Chem. Soc. 2017 139 4828
F. N. Ajjan D. Mecerreyes O. Inganas Biotechnol. J. 2019 14 1900062
A. M. Navarro-Suárez J. Carretero-González N. Casado D. Mecerreyes T. Rojo E. Castillo-Martínez Sustainable Energy Fuels 2018 2 836
C. Friebe A. Lex-Balducci U. S. Schubert ChemSusChem 2019 12 4093
Y. Y. Lai X. Li Y. Zhu ACS Appl. Polym. Mater. 2020 2 113
N. Casado G. Hernández H. Sardón D. Mecerreyes Prog. Polym. Sci. 2016 52 107
K. Pirnat N. Casado L. Porcarelli N. Ballard D. Mecerreyes Macromolecules 2019 52 8155
L. Zhu G. Ding L. Xie X. Cao J. Liu X. Lei J. Ma Chem. Mater. 2019 31 8582
H. Wang R. Emanuelsson H. Liu K. Edstrom F. Mamedov M. Stromme M. Sjodin ACS Appl. Energy Mater. 2019 2 7162
N. Patil A. Aqil F. Ouhib S. Admassie O. Inganäs C. Jérôme C. Detrembleur Adv. Mater. 2017 29 1703373
T. Liu K. C. Kim B. Lee Z. Chen S. Noda S. S. Jang S. W. Lee Energy Environ. Sci. 2017 10 205
N. Wang D. Hou Q. Li P. Zhang H. Wei Y. Mai ACS Appl. Energy Mater. 2019 2 5816
C. Liedel X. Wang M. Antonietti Nano Energy 2018 53 536
I. K. Ilic M. Perovic C. Liedel ChemSusChem 2020 13 1856
N. Patil M. Aqil A. Aqil F. Ouhib R. Marcilla A. Minoia R. Lazzaroni C. Jérôme C. Detrembleur Chem. Mater. 2018 30 5831
L. Akerlund R. Emanuelsson G. Hernández F. Ruipérez N. Casado D. Brandell M. Stromme D. Mecerreyes M. Sjodin ACS Appl. Energy Mater. 2019 2 4486
H. N. Nguyen E. T. Nadres B. G. Alamani D. F. Rodrigues J. Mater. Chem. B 2017 5 6616
J. Xue Z. Zhang J. Nie B. Du Macromolecules 2017 50 5285
A. D. Becke J. Chem. Phys. 2012 136 150901
J. P. Perdew, Electronic structure of solids '91, Akademie Verlag, Berlin, 1991
K. P. Burke and Y. Wang, Electronic density functional theory: recent progress and new directions, Springer, Boston, 1998, p. 384
W. J. Hehre R. Ditchfield J. A. Pople J. Chem. Phys. 1972 56 2257
D. E. Woon T. H. Dunning J. Chem. Phys. 1993 98 1358
M. Cossi V. Barone R. Cammi J. Tomasi Chem. Phys. Lett. 1996 255 327
E. Cancès B. Mennucci J. Tomasi J. Chem. Phys. 1997 107 3032
V. Barone M. Cossi J. Tomasi J. Chem. Phys. 1997 107 3210
V. Barone M. Cossi J. Tomasi J. Comput. Chem. 1998 19 404
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Gaussian, Inc., Wallingford CT, 2016
N. Patil C. Jérome C. Detrembleur Prog. Polym. Sci. 2018 82 34
S. Skelton M. Bostwick K. O'Connor S. Konst S. Casey B. P. Lee Soft Matter 2013 9 3825
P. Glass H. Chung N. R. Washburn M. Sitti Langmuir 2009 25 6607
Y. Xue H. Xiao Polymers 2015 7 2290
N. V. Salim N. Hameed T. L. Hanley Q. Guo Soft Mater. 2013 9 6174
S. W. Kuo P. H. Tung F. C. Chang Macromolecules 2006 39 9388
S. W. Kuo J. Polym. Res. 2008 15 459
J. Yang J. Kiejsers M. van Heek A. Stuiver M. A. Cohen Stuart M. Kamperman Polym. Chem. 2015 6 3121
A. Kiani J. Raoof D. Nematollahi R. Ojani Electroanalysis 2005 17 1755