[en] Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of a catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 ?C and high thermal stability with a degradation temperature of 300 ?C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2=0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.36 V for catechol homopolymer, to 0.56 V for catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion– polymer battery was demostrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs Li+/Li), excellent rate performance (up to 120 C) and high capacity retention after cycling (74% after 800 cycles).
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Galastegui, Antonela; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
Minudri, Daniela; Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina
Casado, Nerea; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Goujon, Nicolas; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Ruipérez, Fernando; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Patil, Nagaraj; Electrochemical Processes Unit, IMDEA Energy, Madrid, Spain
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM) Research Unit, Center for Education and Research on Macromolecules (CERM), Belgium
Marcilla, Rebeca; Electrochemical Processes Unit, IMDEA Energy, Madrid, Spain
Mecerreyes, David; University of the Basque Country, POLYMAT, Donostia/SanSebastian, Spain
Language :
English
Title :
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
Publication date :
01 August 2020
Journal title :
Sustainable Energy & Fuels
eISSN :
2398-4902
Publisher :
RSC
Volume :
4
Issue :
8
Pages :
3934-3942
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 823989 - IONBIKE - IONGELS: FROM NEW CHEMISTRY TOWARD EMERGING APPLICATIONS
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique EU - European Union EC - European Commission
Wang, H., Emanuelsson, R., Liu, H., Edstrom, K., Mamedov, F., Stromme, M., Sjodin, M., (2019) ACS Appl. Energy Mater., 2, p. 7162
Patil, N., Aqil, A., Ouhib, F., Admassie, S., Inganäs, O., Jérôme, C., Detrembleur, C., (2017) Adv. Mater., 29, p. 1703373
Liu, T., Kim, K.C., Lee, B., Chen, Z., Noda, S., Jang, S.S., Lee, S.W., (2017) Energy Environ. Sci., 10, p. 205
Wang, N., Hou, D., Li, Q., Zhang, P., Wei, H., Mai, Y., (2019) ACS Appl. Energy Mater., 2, p. 5816
Liedel, C., Wang, X., Antonietti, M., (2018) Nano Energy, 53, p. 536
Ilic, I.K., Perovic, M., Liedel, C., (2020) ChemSusChem, 13, p. 1856
Patil, N., Aqil, M., Aqil, A., Ouhib, F., Marcilla, R., Minoia, A., Lazzaroni, R., Detrembleur, C., (2018) Chem. Mater., 30, p. 5831
Akerlund, L., Emanuelsson, R., Hernández, G., Ruipérez, F., Casado, N., Brandell, D., Stromme, M., Sjodin, M., (2019) ACS Appl. Energy Mater., 2, p. 4486
Nguyen, H.N., Nadres, E.T., Alamani, B.G., Rodrigues, D.F., (2017) J. Mater. Chem. B, 5, p. 6616
Xue, J., Zhang, Z., Nie, J., Du, B., (2017) Macromolecules, 50, p. 5285
Becke, A.D., (2012) J. Chem. Phys., 136, p. 150901
Perdew, J.P., (1991) Electronic Structure of Solids '91, , Akademie Verlag, Berlin
Burke, K.P., Wang, Y., (1998) Electronic Density Functional Theory: Recent Progress and New Directions, p. 384. , Springer, Boston
Hehre, W.J., Ditchfield, R., Pople, J.A., (1972) J. Chem. Phys., 56, p. 2257
Woon, D.E., Dunning, T.H., (1993) J. Chem. Phys., 98, p. 1358
Cossi, M., Barone, V., Cammi, R., Tomasi, J., (1996) Chem. Phys. Lett., 255, p. 327
Cancès, E., Mennucci, B., Tomasi, J., (1997) J. Chem. Phys., 107, p. 3032
Barone, V., Cossi, M., Tomasi, J., (1997) J. Chem. Phys., 107, p. 3210
Barone, V., Cossi, M., Tomasi, J., (1998) J. Comput. Chem., 19, p. 404