Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa920c (2017).
Goldstein, A. et al. An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8f41 (2017).
Savchenko, V. et al. INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational event GW170817. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8f94 (2017).
Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa91c9 (2017).
Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science http://doi.org/10.1126/science.aap9811 (2017).
Soares-Santos, M. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa9059 (2017).
Valenti, S. et al. The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8edf (2017).
Arcavi, I. et al. Optical emission from a kilonova following a gravitational-wavedetected neutron-star merger. Nature http://doi.org/10.1038/nature24291 (2017).
Tanvir, N. et al. The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa90b6 (2017).
Lipunov, V. et al. MASTER optical detection of the first LIGO/Virgo NSs merging GW170817/G298048. Astrophys. J. (in the press).
Schutz, B. F. Determining the Hubble constant from gravitational wave observations. Nature 323, 310-311 (1986).
Holz, D. E. & Hughes, S. A. Using gravitational-wave standard sirens. Astrophys. J. 629, 15-22 (2005).
Dalal, N., Holz, D. E., Hughes, S. A. & Jain, B. Short GRB and binary black hole standard sirens as a probe of dark energy. Phys. Rev. D 74, 063006 (2006).
Nissanke, S., Holz, D. E., Hughes, S. A., Dalal, N. & Sievers, J. L. Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys. J. 725, 496-514 (2010).
Nissanke, S. et al. Determining the Hubble constant from gravitational wave observations of merging compact binaries. Preprint at https://arxiv.org/abs/1307.2638 (2013).
Freedman, W. L. et al. Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47-72 (2001).
Riess, A. G. et al. A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016).
Del Pozzo, W. Inference of the cosmological parameters from gravitational waves: application to second generation interferometers. Phys. Rev. D 86, 043011 (2012).
Abbott, B. P. et al. Binary black hole mergers in the first Advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016).
Messenger, C. & Veitch, J. Avoiding selection bias in gravitational wave astronomy. New J. Phys. 15, 053027 (2013).
Sakai, S. et al. The Hubble Space Telescope key project on the extragalactic distance scale. XXIV. The calibration of Tully-Fisher relations and the value of the Hubble constant. Astrophys. J. 529, 698-722 (2000).
Hinshaw, G. et al. Five-year Wilkinson microwave anisotropy probe observations: data processing, sky maps, and basic results. Astrophys. J. Suppl. Ser. 180, 225-245 (2009).
Crook, A. C. et al. Groups of galaxies in the Two Micron All Sky Redshift Survey. Astrophys. J. 655, 790-813 (2007);
erratum 685, 1320-1323 (2008).
Springob, C. M. et al. The 6dF Galaxy Survey: peculiar velocity field and cosmography. Mon. Not. R. Astron. Soc. 445, 2677-2697 (2014).
Carrick, J., Turnbull, S. J., Lavaux, G. & Hudson, M. J. Cosmological parameters from the comparison of peculiar velocities with predictions from the 2M++ density field. Mon. Not. R. Astron. Soc. 450, 317-332 (2015).
Aubourg, É. et al. Cosmological implications of baryon acoustic oscillation measurements. Phys. Rev. D 92, 123516 (2015).
Bonvin, V. et al. H0LiCOW - V. New COSMOGRAIL time delays of HE 0435.1223: H0 to 3.8 per cent precision from strong lensing in a flat ΛCDM model. Mon. Not. R. Astron. Soc. 465, 4914-4930 (2017).
Henning, J. W. et al. Measurements of the temperature and E-mode polarization of the CMB from 500 square degrees of SPTpol data. Preprint at https://arxiv.org/abs/1707.09353 (2017).
Huang, J.-S., Cowie, L. L. & Luppino, G. A. Morphological classification of the local I- and K-band galaxy sample. Astrophys. J. 496, 31-38 (1998).
Bloom, J. S., Kulkarni, S. R. & Djorgovski, S. G. The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astron. J. 123, 1111-1148 (2002).
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163-1183 (2006).
Jones, D. H. et al. The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures. Mon. Not. R. Astron. Soc. 399, 683-698 (2009).
Huchra, J. P. et al. The 2MASS Redshift Survey-description and data release. Astrophys. J. Supp. Ser. 199, 26 (2012).
Veitch, J. et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Phys. Rev. D 91, 042003 (2015).
Hannam, M. et al. Simple model of complete precessing black-hole-binary gravitational waveforms. Phys. Rev. Lett. 113, 151101 (2014).
Cornish, N. J. & Littenberg, T. B. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches. Class. Quantum Gravity 32, 135012 (2015).
Buonanno, A. & Damour, T. Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999).
Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014).
Hinderer, T. & Flanagan, É. É. Two-timescale analysis of extreme mass ratio inspirals in Kerr spacetime: orbital motion. Phys. Rev. D 78, 064028 (2008).
Vines, J., Flanagan, É. É. & Hinderer, T. Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals. Phys. Rev. D 83, 084051 (2011).
Loredo, T. J. Accounting for source uncertainties in analyses of astronomical survey data. AIP Conf. Proc. 735, 195-206 (2004).
Mandel, I., Farr, W. M. & Gair, J. Extracting Distribution Parameters From Multiple Uncertain Observations With Selection Biases. Report No. P1600187-v1, https://dcc.ligo.org/LIGO-P1600187/public (LIGO, 2016).
Metzger, B. D. & Berger, E. What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys. J. 746, 48 (2012).
Abbott, B. P. et al. Supplement: "The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914" (2016, ApJL, 833, L1). Astrophys. J. Suppl. Ser. 227, 14 (2016).
Dalya, G., Frei, Z., Galgoczi, G., Raffai, P. & de Souza, R. S. GLADE catalog (Dalya+, 2016). VizieR Online Data Catalog http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=VII/275 (2016).
Strauss, M. A. & Willick, J. A. The density and peculiar velocity fields of nearby galaxies. Phys. Rep. 261, 271-431 (1995).