[en] Organic matter in lake sediments contains information that can be used to reconstruct lake environmental histories over decades or centuries. In this study, we used organic geochemical proxies (i.e., total organic carbon [TOC], TOC/total nitrogen [TN] atomic ratios [C/N], stable carbon isotope ratios of TOC [d13CTOC] and palmitic acid [d13CC16:0], and nitrogen isotope ratios of bulk sediment [d15Nbulk]) in sediments from Lake Kawaguchi, Japan, to reconstruct detailed histories of the organic matter accumulation and lake productivity over the past 130 years. Vertical profiles of the mass accumulation rate (MAR) of TOC in the eastern lake basin (core KAW14-7A) showed parallel increases with the C/N ratio from the 1960s to the 1980s, indicating an accelerated delivery of terrestrial organic matter via anthropogenic land-use change. In contrast, the C/N ratios in the western and central basins (cores KAW14-1A and KAW14-4B, respectively) were almost constant prior to the 1980s, suggesting that the increasing trends in the TOC MAR values in these cores are most likely attributable to the onset of eutrophication associated with rapid economic growth after the mid-1950s. On the other hand, the d15Nbulkshowed a gradual increase from the late 1870s, providing evidence for anthropogenic nitrogen input to the lake prior to the apparent eutrophication. After the 1960s–1970s, the d15Nbulk values rapidly increased, demonstrating water deterioration associated with the direct nutrient discharge into the lake from domestic wastewater. The d13CC16:0 profiles displayed similar increasing trends to d15Nbulk from the mid-1960s, demonstrating a close relationship between lake productivity and anthropogenic nitrogen input in Lake Kawaguchi. Our geochemical records as a whole clearly show high algal productivity and enhanced deposition of organic matter in recent decades, suggesting that the amelioration of the lake water is a likely consequence of the transfer of nnutrients to the sediment by enhanced productivity, rather than a decrease in the amount of nutrient inflow into the lake.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Yamamoto, Shinya
Hubert, Aurelia ; Université de Liège - ULiège > Département de géographie > Unité Sphère
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aichner B, Wilkes H, Herzschuh U, Mischke S, Zhang C (2010) Biomarker and compound-specific δ13C evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau. J Paleolimnol 43:873–899. 10.1007/s10933-009-9375-y DOI: 10.1007/s10933-009-9375-y
Buesseler K, Aoyama M, Fukasawa M (2011) Impacts of the Fukushima nuclear power plants on marine radioactivity. Environ Sci Technol 45:9931. 10.1021/es202816c DOI: 10.1021/es202816c
Carpenter SR (1981) Submersed vegetation: an internal factor in lake ecosystem succession. Am Nat 118:372–383 DOI: 10.1086/283829
Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568 DOI: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
Castañeda IS, Schouten S (2011) A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quat Sci Rev 30:2851–2891. 10.1016/j.quascirev.2011.07.009 DOI: 10.1016/j.quascirev.2011.07.009
Castañeda IS, Werne JP, Johnson TC, Powers LA (2011) Organic geochemical records from Lake Malawi (East Africa) of the last 700 years, part II: Biomarker evidence for recent changes in primary productivity. Palaeogeogr Palaeoclimatol Palaeoecol 303:140–154. 10.1016/j.palaeo.2010.01.006 DOI: 10.1016/j.palaeo.2010.01.006
Castañeda IS, Werne JP, Johnsona TC (2009) Influence of climate change on algal community structure and primary productivity of Lake Malawi (East Africa) from the Last Glacial Maximum to present. Limnol Oceanogr 54:2431–2447. 10.4319/lo.2009.54.6_part_2.2431 DOI: 10.4319/lo.2009.54.6_part_2.2431
Chislock MF, Doster E, Zitomer RA, Wilson AE (2013) Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat Educ Knowl 4:10
Hamajima Y, Komura K (2004) Background components of Ge detectors in Ogoya underground laboratory. Appl Radiat Isot 61:179–183. 10.1016/j.apradiso.2004.03.041 DOI: 10.1016/j.apradiso.2004.03.041
Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301:7–56. 10.1016/0005-2760(95)00242-1 DOI: 10.1016/0005-2760(95)00242-1
Herczeg AL, Smith AK, Dighton JC (2001) A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C:N, δ15N and δ13C in sediments. Appl Geochemistry 16:73–84. 10.1016/S0883-2927(00)00016-0 DOI: 10.1016/S0883-2927(00)00016-0
Hirabayashi K, Oga K, Yoshizawa K, Yoshida N, Kazama F (2012) A long-term eutrophication process observed from the changes in the horizontal distribution of profundal oligochaete fauna in mesotrophic-eutrophic Lake Kawaguchi, Japan. Turkish J Zool 36:39–46. 10.3906/zoo-0912-18 DOI: 10.3906/zoo-0912-18
Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214. 10.4319/lo.1998.43.2.0200 DOI: 10.4319/lo.1998.43.2.0200
Hollander DJ, McKenzie JA (1991) CO2 control on carbon-isotope fractionation during aqueous photosynthesis: a paleo-pCO2 barometer. Geology 19:929–932. 10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO;2 DOI: 10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO;2
Hollander DJ, McKenzie JA, Lo Ten Haven H (1992) A 200 year sedimentary record of progressive eutrophication in Lake Greifen (Switzerland): implications for the origin of organic-carbon- rich sediments. Geology 20:825–828. 10.1130/0091-7613(1992)020<0825:AYSROP>2.3.CO;2 DOI: 10.1130/0091-7613(1992)020<0825:AYSROP>2.3.CO;2
Hollander DJ, Smith M (2001) Microbially mediated carbon cycling as a control on the δ13C of sedimentary carbon in eutrophic Lake Mendota (USA): New models for interpreting isotopic excursions in the sedimentary record. Geochim Cosmochim Acta 65:4321–4337 DOI: 10.1016/S0016-7037(00)00506-8
Honda MC, Aono T, Aoyama M, Hamajima Y, Kawakami H, Kitamura M, Masumoto Y, Miyazawa Y, Takigawa M, Saino T (2012) Dispersion of artificial caesium-134 and -137 in the western North Pacific one month after the Fukushima accident. Geochem J 46:e1–e9 DOI: 10.2343/geochemj.1.0152
Horiuchi S, Lee Y, Watanabe M, Fujita E (1992) Some limnological characteristics of Mt. Fuji. Proc Inst Nat Sci Nihon Univ 27:45–56
Huang Y, Street-Perrott FA, Perrott RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound-specific δ13C analyses of sediments from Sacred Lake. Mt Kenya Geochim Cosmochim Acta 63:1383–1404. 10.1016/S0016-7037(99)00074-5 DOI: 10.1016/S0016-7037(99)00074-5
Kobayashi H, Koshimizu S, Fukasawa R, Kyotani T, Uchiyama T, Iwatsuki M (2000) Organic chemical analysis of sediment cores from Lake Kawaguchi in Yamanashi Prefecture, Central Japan. Proc 10th Symp Geo-Environments Geo-Tecnics 217–222
Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–411. 10.1016/0012-821X(71)90202-0 DOI: 10.1016/0012-821X(71)90202-0
Kristen I, Wilkes H, Vieth A, Zink KG, Plessen B, Thorpe J, Partridge TC, Oberhänsli H (2010) Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: Evidence for deglacial wetness and early Holocene drought from South Africa. J Paleolimnol 44:143–160. 10.1007/s10933-009-9393-9 DOI: 10.1007/s10933-009-9393-9
Kumar A, Hage-Hassan J, Baskaran M, Miller CJ, Selegean JP, Creech CT (2016) Multiple sediment cores from reservoirs are needed to reconstruct recent watershed changes from stable isotopes (δ13C and δ15N) and C/N ratios: case studies from the mid-western United States. J Paleolimnol 56:15–31. 10.1007/s10933-016-9888-0 DOI: 10.1007/s10933-016-9888-0
Leavitt PR, Brock CS, Ebel C, Patoine A (2006) Landscape-scale effects of urban nitrogen on a chain of freshwater lakes in central North America. Limnol Oceanogr 51:2262–2277. 10.4319/lo.2006.51.5.2262 DOI: 10.4319/lo.2006.51.5.2262
Lu YH, Meyers PA, Robbins JA, Eadie BJ, Hawley N, Hyeun JK (2014) Sensitivity of sediment geochemical proxies to coring location and corer type in a large lake: Implications for paleolimnological reconstruction. Geochemistry, Geophys Geosystems 15:1960–1976. 10.1002/2013GC004989.Received DOI: 10.1002/2013GC004989.Received
Mayr C, Fey M, Haberzettl T, Janssen S, Lücke A, Maidana NI, Ohlendorf C, Schäbitz F, Schleser GH, Struck U, Wille M, Zolitschka B (2005) Palaeoenvironmental changes in southern Patagonia during the last millennium recorded in lake sediments from Laguna Azul (Argentina). Palaeogeogr Palaeoclimatol Palaeoecol 228:203–227. 10.1016/j.palaeo.2005.06.001 DOI: 10.1016/j.palaeo.2005.06.001
Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289. 10.1016/s0146-6380(02)00168-7 DOI: 10.1016/s0146-6380(02)00168-7
Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 144:289–302. 10.1016/0009-2541(94)90059-0 DOI: 10.1016/0009-2541(94)90059-0
Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900. 10.1016/0146-6380(93)90100-P DOI: 10.1016/0146-6380(93)90100-P
Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372. 10.1023/A:1008073732192 DOI: 10.1023/A:1008073732192
Nakamura S, Uejima T, Watanabe H, Matsuyama-serisawa K, Serisawa Y (2016) Seasonal changes and long-term fluctuations of water quality in the Fuji Five Lakes, Central Japan (in Japanese). Mt Fuji Res 10:31–40
Ochiai S, Nagao S, Itono T, Suzuki T, Kashiwaya K, Yonebayashi K, Okazaki M, Kaeriyama M, Qin Y-X, Hasegawa T, Yamamoto M (2015) Recent eutropication and environmental changes in the catchment inferred from geochemical properties of Lake Onuma sediments in Japan. In: Kashiwaya K, Shen J, Kim JY (eds) Earth surface processes and environmental changes in East Asia. Springer, Tokyo, pp 257–268 DOI: 10.1007/978-4-431-55540-7_13
Ogihara S, Fukushima Y, Koshimizu S (2002) Behavior of polluted organic matter in the sediments of Lake Kawaguchi. Res Org Geochemistry 17:65–69
Ritchie JC, McHenry JR (1990) Application of radioactive fallout Cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19:215–233. 10.2134/jeq1990.00472425001900020006x DOI: 10.2134/jeq1990.00472425001900020006x
Robbins J (1978) Geochemical and geophysical applications of radioactive lead. In: Nriagu J (ed) The biogeochemistry of lead in the environment. Elsevier, Amsterdam, pp 285–393
Sakaguchi A, Yamamoto M, Shimizu T, Koshimizu S (2004) Geochemical record of U and Th isotopes in bottom sediments of Lake Kawaguchi at the foot of Mt. Fuji. Central Japan J Radioanal Nucl Chem 262:617–628. 10.1007/s10967-004-0484-9 DOI: 10.1007/s10967-004-0484-9
Sarkar S, Wilkes H, Prasad S, Brauer A, Riedel N, Stebich M, Basavaiah N, Sachse D (2014) Spatial heterogeneity in lipid biomarker distributions in the catchment and sediments of a crater lake in central India. Org Geochem 66:125–136. 10.1016/j.orggeochem.2013.11.009 DOI: 10.1016/j.orggeochem.2013.11.009
Schelske CL, Hodell DA (1995) Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol Oceanogr 40:918–929 DOI: 10.4319/lo.1995.40.5.0918
Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196 DOI: 10.1016/S0269-7491(99)00091-3
Talbot MR (2005) Nitrogen isotopes in palaeolimnology. Tracking environmental change using lake sediments: physical and chemical techniques. Kluwer, Dordrecht, pp 401–439
Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–813. 10.4319/lo.2000.45.4.0801 DOI: 10.4319/lo.2000.45.4.0801
Umezawa Y, Hosono T, Onodera S, Siringand F, Buapeng S, Delinom R, Yoshimizu C, Tayasu I, Nagata T, Taniguchi M (2009) Tracing the sources of nitrate and ammonium concentrations in groundwater at developing Asian megacities, using GIS data and nitrate δ15N and δ18O. Sci Total Environ 407:3219–3231 DOI: 10.1016/j.scitotenv.2009.01.048
Wang J, Zhu L, Nishimura M, Nakamura T, Ju J, Xie M, Takahiro W, Testsuya M (2009) Spatial variability and correlation of environmental proxies during the past 18,000 years among multiple cores from Lake Pumoyum Co, Tibet, China. J Paleolimnol 42:303–315. 10.1007/s10933-008-9277-4 DOI: 10.1007/s10933-008-9277-4
Yamamoto S, Miyairi Y, Yokoyama Y, Suga H, Ogawa NO, Ohkouchi N (2020) Compound-specific radiocarbon analysis of organic compounds from Mount Fuji proximal lake (Lake Kawaguchi) sediment, central Japan. Radiocarbon 62:439–451. 10.1017/rdc.2019.158 DOI: 10.1017/rdc.2019.158
Yamamoto S, Uchiyama T, Miyairi Y, Yokoyama Y (2018) Volcanic and environmental influences of Mt. Fuji on the δ13C of terrestrially-derived n-alkanoic acids in sediment from Lake Yamanaka, central Japan. Org Geochem 119:50–58. 10.1016/j.orggeochem.2018.02.002 DOI: 10.1016/j.orggeochem.2018.02.002
Yamanashi Prefecture (1993) The water quality of the Fuji Five Lakes over 21 years (1971–1991) (in Japanese). Yamanashi Prefecture, Kofu
Yoshida K, Kunikita D, Miyazaki Y, Nishida Y, Miyao T, Matsuzaki H (2013) Dating and stable isotope analysis of charred residues on the incipient jomon pottery (Japan). Radiocarbon 55:1322–1333 DOI: 10.1017/S0033822200048232
Yoshimura S, Kawada S (1942) Limnological studies of Fuji Five Lake II: Physicochemical characteristics of water in Lakes Kawaguchi and Shoji in summer (in Japanese). Geogr Rev Jpn 7:539–559 DOI: 10.4157/grj.18.539
Yoshimura S, Kawada S (1944) Limnological studies of Fuji Five Lakes III: Detail measurement of Lake Kawaguchi and water temperature gelogy (in Japanese). Geogr Rev Jpn 20:12–20 DOI: 10.4157/grj.20.12
Yoshizawa K, Yamamoto T (2017) Eutrophication of Lake Kawaguchi based on diatom assemblages in the sediments. Annu Rep Yamanashi Inst Public Heal 61:53–56
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.