[en] Broken or deformed speleothems have been used as indicators of paleo-earthquakes since the 1990s; however, a causal link is difficult to prove except for some thin speleothems. In contrast, the presence of intact speleothems permits estimating an upper limit of the level of horizontal ground motions of past seismicity in the area. The natural frequencies of speleothems are fundamental parameters for their response to earthquakes. This study proposes a new method of in situ characterization of these natural frequencies. Tested in the Han-sur-Lesse cave (Belgian Ardennes), the method is based on recording the ambient seismic noise using three-component sensors on a stalagmite and a 3D laser scan of its shape. The ambient seismic noise records allow a precise determination of the eigenfrequencies of the stalagmite. In addition, numerical models based on the 3D scan show good consistency between measured and modeled data. The joint analysis of these two techniques concludes that the shape of the stalagmite (elliptical cross-section and shape irregularities) influence the eigenfrequencies and polarization of the modes while also causing a near-orthogonal split of natural frequencies. The motions recorded on the stalagmite show significant amplification compared to those recorded at the free surface outside the cave, which has a strong impact on seismic hazard assessment based on speleothems.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Martin, Aurélie ; Université de Liège - ULiège > Département de Géologie > AGEs > Doct. sc. (géol. - paysage)
lecocq, Thomas; Observatoire Royal de Belgique - ORB > Séismologie-Gravimètrie
Hinzen, Klaus-G.; University of Cologne > Earthquakegeology and Archaeoseismology
Camelbeeck, Thierry; Observatoire Royal de Belgique - ORB > Séismologie-Gravimètrie
Quinif, Yves; Université de Mons - UMONS > Faculté Polytechnique > Géologie fondamentale et appliquée
Fagel, Nathalie ; Université de Liège - ULiège > Département de géologie > Argiles, géochimie et environnements sédimentaires
Language :
English
Title :
Characterizing Stalagmites’ Eigenfrequencies by Combining In Situ Vibration Measurements and Finite Element Modeling Based on 3D Scans
Forti, P. Seismotectonic and paleoseismic studies from speleothems: The state of the art. Geol. Belg. 2001, 4, 175-185.
Becker, A.; Davenport, C.A.; Eichenberger, U.; Gilli, E.; Jeannin, P.-Y.; Lacave, C. Speleoseismology: A critical perspective. J. Seismol. 2006, 10, 371-388, doi:10.1007/s10950-006-9017-z.
Antonio Crispim, J. Seismotectonic versus man-induced morphological changes in a cave on the Arrabida chain (Portugal). Geodin. Acta 1999, 12, 135-142, doi:10.1080/09853111.1999.11105337.
Gilli, E. Rupture de speleothemes par fluage d’un remplissage endokarstique. L’exemple de la grotte de Ribiere (Bouches-du-Rhone). Comptes Rendus de l’Academie des Sciences-Series IIA-Earth and Planetary Science 1999, 329, 807-813, doi:10.1016/S1251-8050(00)88636-X.
Kempe, S. Natural Speleothem Damage in Postojnska Jama, Slovenia, Caused by Glacial Cave Ice? A First Assessment. Acta Carsologica 2004, 33, doi:10.3986/ac.v33i1.329.
Gilli, E. Glacial causes of damage and difficulties to use speleothems as palaeoseismic indicators. Geodin. Acta-GEODIN ACTA 2004, 17, 229-240, doi:10.3166/ga.17.229-240.
Gilli, E. Review on the use of natural cave speleothems as palaeoseismic or neotectonics indicators. Comptes Rendus Geosci. 2005, 337, 1208-1215, doi:10.1016/j.crte.2005.05.008.
Sebela, S. Broken Speleothems as Indicators of Tectonic Movements. Acta Carsologica 2008, 37, 51-62, doi:10.3986/ac.v37i1.159.
Cadorin, J.F.; Jongmans, D.; Plumier, A.; Camelbeeck, T.; Delaby, S.; Quinif, Y. Modelling of speleothems failure in the Hotton cave (Belgium). Is the failure earthquake induced? Geol. Mijnb. 2001, 80, 315-321, doi:10.1017/S001677460002391X.
Lacave, C.; Koller, M.G.; Egozcue, J.J. What can be concluded about seismic history from broken and unbroken speleothems? J.Earthq. Eng. 2004, 8, 431-455, doi:10.1080/13632460409350496.
Camelbeeck, T.; Quinif, Y.; Verheyden, S.; Vanneste, K.; Knuts, E. Earthquakes as collapse precursors at the Han-sur-Lesse Cave in the Belgian Ardennes. Geomorphology 2018, 308, 13-24, doi:10.1016/j.geomorph.2018.01.030.
Paskaleva, I.; Szeidovitz, G.; Kostov, K.; Koleva, G.; Nikolov, G.; Gribovzsky, K. Calculation the peak ground horizontal acceleration generated by paleoearthquake from failure tensile stress of speleotherm, In Proceedings of the International Conference on Civil Engineering Design and Construction, Varna, Bulgaria, 14-16 September 2006.
Szeidovitz, G.; Suranyi, G.; Gribovszki, K.; Bus, Z.; Leel-Ossy, S.; Varga, Z. Estimation of an upper limit on prehistoric peak ground acceleration using the parameters of intact speleothems in Hungarian caves. J. Seismol. 2008, 12, 21-33, doi:10.1007/s10950-007-9068-9.
Szeidovitz, G.; Paskaleva, I.; Gribovszki, K.; Kostov, K.; Surany, G.; Varga, P.; Nikolov, G. Estimation of an upper limit on prehistoric peak ground acceleration using the parameters of intact speleothems in caves situated at the western part of Balkan Mountain Range, North-West Bulgaria. Acta Geod. Geoph. Hung. 2008, 43, 249-266, doi:10.1556/AGeod.43.2008.2-3.13.
Gribovszki, K.; Paskaleva, I.; Kostov, K.; Varga, P.; Nikolov, G. Estimating An Upper Limit On Prehistoric Peak Ground Acceleration Using The Parameters Of Intact Speleothems In Caves In Southwestern Bulgaria. In Proceedings of the Harmonization of Seismic Hazard in Vrancea Zone; Zaicenco, A., Craifaleanu, I., Paskaleva, I., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 287-308.
Gribovszki, K.; Bokelmann, G.; Szeidovitz, G.; Paskaleva, I.D.; Brimich, L.; Kovacs, K.; Monus, P. Comprehensive investigation of intact, vulnerable stalagmites to estimate an upper limit on prehistoric horizontal ground acceleration. In Proceedings of the Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013), Vienna, Austria, 28-30 August 2013.
Gribovszki, K.; Kovacs, K.; Monus, P.; Shen, C.; Torok, A.; Brimich, L. Estimation of an upper limit on prehistoric horizontal peak ground acceleration using the parameters of intact stalagmites and the mechanical properties of broken stalagmites in Domica cave, Slovakia. Slov. Kras. 2013, 51, 5-14.
Bokelmann, G.; Gribovszki, K. Constraints on Long-Term Seismic Hazard From Vulnerable Stalagmites. In Proceedings of the CSNI Workshop on Testing PSHA Results and Benefit of Bayesian Techniques for Seismic Hazard Assessment, Pavia, Italy, 4-6 February 2015.
Gribovszki, K.; Kovacs, K.; Monus, P.; Bokelmann, G.; Konecny, P.; Lednicka, M.; Moseley, G.; Spotl, C.; Edwards, R.L.; Bednarik, M.; et al. Estimating the upper limit of prehistoric peak ground acceleration using an in situ, intact and vulnerable stalagmite from Plavecka priepast cave (Detrekoi-zsomboly), Little Carpathians, Slovakia — first results. J. Seismol. 2017, 21, 1111-1130, doi:10.1007/s10950-017-9655-3.
Gribovszki, K.; Esterhazy, S.; Bokelmann, G. Numerical Modeling of Stalagmite Vibrations. Pure and Appl. Geophys. 2018, 175, doi:10.1007/s00024-018-1952-4.
Brune, J.N. Precariously balanced rocks and ground-motion maps for Southern California. Bull. Seismol. Soc. Am. 1996, 86, 43-54.
Schweppe, G.; Hinzen, K.-G.; Reamer, S.K.; Fischer, M.; Marco, S. The Ruin of the Roman Temple of Kedesh, Israel; Example of a Precariously Balanced Archaeological Structure Used as a Seismoscope. Ann. Geophys. 2017, 60, 0444, doi:10.4401/ag-7152.
Lacave, C.; Levret, A.; Koller, M. Measurement of natural frequencies and damping of speleothems. In Proceedings of the 12th World Conference on Earthquake Engineering; Auckland, NewZealand, 30 January-4 February 2000.
Bottelin, P.; Baillet, L.; Mathy, A.; Garnier, L.; Cadet, H.; Brenguier, O. Seismic study of soda straws exposed to nearby blasting vibrations. J. Seismol. 2020, doi:10.1007/s10950-020-09922-7.
Hajri, S.; Sadier, B.; Jaillet, S.; Ployon, E.; Boche, E.; Chakroun, A.; Saulnier, G.-M.; Delannoy, J.-J. Analyse spatiale et morphologique d’une foret de stalagmites par modelisation 3D dans le reseau d’Orgnac (Ardeche, France). Karstologia 2009, 53, 1-14, doi:10.3406/karst.2009.2644.
Jaillet, S.; Sadier, B.; Hajri, S.; Ployon, E.; Delannoy, J.-J. Une analyse 3D de l’endokarst: Applicationslasergrammetriques sur l’aven d’Orgnac (Ardeche, France). Geomorphol. Relief, Process., Environ. 2011, 379-394, doi:10.4000/geomorphologie.9594.
Lacave, C.; Sadier, B.; Delannoy, J.J.; Nehme, C.; Egozcue, J.J. The use of speleothems to better constrain long return period seismic hazard in Lebanon. In Proceedings of the 15th World Conference on Earthquake Engineering; Lisbonne, Portugal, 24-28 September 2012; pp. 1-7.
Havron, C.; Quinif, Y.; Vandycke, S. Tectonique et karstification: Le cas de la region de Han-sur-Lesse (Belgique). Karstologia 2004, 43, 19-26, doi:10.3406/karst.2004.2540.
Quinif, Y. La fantomisation-Une nouvelle maniere de concevoir la formation des cavernes. Regards 2014, 79, 42-72.
Quinif, Y. Le systeme karstique de Han-sur-Lesse. In Atlas du Karst Wallon: Bassin de la Lesse Calestienne; CWEPSS/Service Public de Wallonie: Ixelles, Belgium, 2015; pp. 31-38.
Quinif, Y. Le complexe sedimentaire de la Galerie des Vervietois (Grotte de Han-sur-Lesse, Belgique). Geol. Belg. 2017, doi:10.20341/gb.2017.005.
Dubois, C.; Quinif, Y.; Baele, J.-M.; Barriquand, L.; Bini, A.; Bruxelles, L.; Dandurand, G.; Havron, C.; Kaufmann, O.; Lans, B.; et al. The process of ghost-rock karstification and its role in the formation of cave systems. Earth-Sci. Rev. 2014, 131, 116-148, doi:10.1016/j.earscirev.2014.01.006.
Quinif, Y.; Baele, J.-M.; Dubois, C.; Havron, C.; Kaufmann, O.; Vergari, A. Fantomisation: Un nouveau paradigme entre la theorie des deux phases de Davis et la theorie de la biorhexistasie d’Erhart. Geol. Belg. 2014, 17, 66-74.
Camelbeeck, T.; Vanneste, K.; Alexandre, P.; Verbeeck, K.; Petermans, T.; Rosset, P.; Everaerts, M.; Warnant, R.; Van Camp, M. Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea. In Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues; Geological Society of America: Boulder, CO, USA, 2007; ISBN 978-0-8137-2425-6.
Alexandre, P.; Kusman, D.; Petermans, T.; Camelbeeck, T. The 18 September 1692 Earthquake in the Belgian Ardenne and Its Aftershocks. In Historical Seismology: Interdisciplinary Studies of Past and Recent Earthquakes; Frechet, J., Meghraoui, M., Stucchi, M., Eds.; Modern Approaches in Solid Earth Sciences; Springer Netherlands: Dordrecht, The Netherlands, 2008; pp. 209-230, ISBN 978-1-4020-8222-1.
Delaere, C.; Warmenbol, E. Les nouvelles fouilles subaquatiques aux grottes de Han (Rochefort, prov. de Namur, Belgique). Etude d’une fibule de La Tene B 1 et de son contexte. Lunula. Archaeol. Protohist. 2018, XXVI, 159-165.
Bonniver, I. Etude Hydrogeologique et Dimensionnement par Modelisation du Systeme-Tragage du Reseau Karstique de Han-sur-Lesse (Massif de Boine-Belgique). Ph.D. Thesis, Universite de Namur, Namur, Belgium, September 2011.
Poulain, A. Flow and Transport Characterization in Vadose and Phreatic Zones of Karst Aquifers-Experimental Approaches in the Givetian limestones of South Belgium. Ph.D. Thesis, Universite de Namur, Namur, Belgium, September 2017.
Blockmans, S.; Dumoulin, V. Houyet-Han-sur-Lesse 59/1-2. Carte Geologique de Wallonie. Submitted.
Cloud Compare (v2.10.2) [GPL software]. Available online: Http://www.cloudcompare.org/ (accessed on 18 October 2020)
Van der Walt, S.; Schonberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image processing in Python. PeerJ 2014, 2, e453, doi:10.7717/peerj.453.
Halir’, R.; Flusser, J. Numerically stable direct least squares fitting of ellipses. In Proceedings of the Proc. 6th International Conference in Central Europe on Computer Graphics and Visualization, Plzen, Czech Republic, 9-13 February 1998; pp. 125-132.
Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 1965, 19, 297-297, doi:10.1090/S0025-5718-1965-0178586-1.
Konno, K.; Ohmachi, T. Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bull. Seismol. Soc. Am. 1998, 18, 228-241.
Van Noten, K.; Devleeschouwer, X.; Goffin, C.; Meyvis, C.; Molron, J.; Debacker, T.N.; Lecocq, T. Bedrock morphology modelling using geologically-dependent empirical equations between resonance frequency and bedrock depth. J. Seismol. under revision.
Rao, S.S. Vibration of Continuous Systems; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-471-77171-5.
Bonkowski, P.; Zembaty, Z.; Bobra, P.; Gribovszki, K. Modeling seismic capacity of stalagmites. In Proceedings of the EGU General Assembly 2020, Online, 4-8 May 2020.
Autodesk Inc. Fusion 360 Help I Getting Started with Fusion 360. Available online: Https://help.autodesk.com/view/fusion360/ENU/?guid=GUID-1C665B4D-7BF7-4FDF-98B0-AA7EE12B5AC2 (accessed on 1 October 2020).
Lecocq, T.; Hicks, S.P.; Noten, K.V.; van Wijk, K.; Koelemeijer, P.; Plaen, R.S.M.D.; Massin, F.; Hillers, G.; Anthony, R.E.; Apoloner, M.-T.; et al. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science 2020, doi:10.1126/science.abd2438.
Lecocq, T.; Massin, F.; Satriano, C.; Vanstone, M.; Megies, T. SeismoRMS-A Simple Python/Jupyter Notebook Package for Studying Seismic Noise Changes; Zenodo, 2020. Avaliable online: Https://zenodo.org/record/3820046#.X4u9f3IRVPY (accessed on 18 October 2020)
Bottelin, P.; Levy, C.; Baillet, L.; Jongmans, D.; Gueguen, P. Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps). Geophys. J. Int. 2013, 194, 849-858, doi:10.1093/gji/ggt046.
Mikael, A.; Gueguen, P.; Bard, P.-Y.; Roux, P.; Langlais, M. The Analysis of Long-Term Frequency and Damping Wandering in Buildings Using the Random Decrement Technique. Bull. Seismol. Soc. Am. 2013, 103, 236-246, doi:10.1785/0120120048.
Hinzen, K.-G.; Hinojosa-Prieto, H.R.; Kalytta, T. Site Effects in Archaeoseismic Studies at Mycenaean Tiryns and Midea. Seismol. Res. Lett. 2016, 87, 1060-1074, doi:10.1785/0220160032.
Geimer, P.R.; Finnegan, R.; Moore, J.R. Sparse Ambient Resonance Measurements Reveal Dynamic Properties of Freestanding Rock Arches. Geophys. Res. Lett. 2020, 47, e2020GL087239, doi:10.1029/2020GL087239.
Aki, K.; Richards, P.G. Quantitative Seismology, 2nd ed.; University Science Books: Mill Valley, CA, USA, 2002; ISBN 0-935702-96-2.
Bethmann, F.; Deichmann, N.; Mai, P.M. Seismic wave attenuation from borehole and surface records in the top 2.5km beneath the city of Basel, Switzerland. Geophys. J. Int. 2012, 190, 1257-1270, doi:10.1111/j.1365-246X.2012.05555.x.
Hinzen, K.-G.; Fleischer, C.; Schock-Werner, B.; Schweppe, G. Seismic Surveillance of Cologne Cathedral. Seismol. Res. Lett. 2012, 83, 9-22, doi:10.1785/gssrl.83.1.9.
Oliphant, T. Guide to Numpy; 2006. Avaliable online: Https://www.researchgate.net/publication/213877900_Guide_to_NumPy (accessed on 18 October 2020)
Beyreuther, M.; Barsch, R.; Krischer, L.; Megies, T.; Behr, Y.; Wassermann, J. ObsPy: A Python Toolbox for Seismology. Seismol. Res. Lett. 2010, 81, 530-533, doi:10.1785/gssrl.81.3.530.
Krischer, L.; Megies, T.; Barsch, R.; Beyreuther, M.; Lecocq, T.; Caudron, C.; Wassermann, J. ObsPy: A bridge for seismology into the scientific Python ecosystem. Comput. Sci. Disc. 2015, 8, 014003, doi:10.1088/1749-4699/8/1/014003.
Megies, T.; Beyreuther, M.; Barsch, R.; Krischer, L.; Wassermann, J. ObsPy-What can it do for data centers and observatories? Ann.Geophys. 2011, 54, 47-58, doi:10.4401/ag-4838.
Wathelet, M.; Chatelain, J.-L.; Cornou, C.; Di Giulio, G.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 2020, 91, doi:10.1785/0220190360.