[en] The Dion-Jacobson (DJ) family of perovskite-related
materials have recently attracted interest due to their polar structures and
properties, resulting from hybrid-improper mechanisms for ferroelectricity
in n = 2 systems and from proper mechanisms in n = 3 CsBi2Ti2NbO10. We
report here a combined experimental and computational study on analogous
n = 3 CsLn2Ti2NbO10 (Ln = La, Nd) materials. Density functional theory
calculations reveal the shallow energy landscape in these systems and give an
understanding of the competing structural models suggested by neutron and
electron diffraction studies. The structural disorder resulting from the
shallow energy landscape breaks inversion symmetry at a local level,
consistent with the observed second-harmonic generation. This study
reveals the potential to tune between proper and hybrid-improper mechanisms by composition in the DJ family. The disorder and shallow energy landscape have implications for designing functional materials with properties reliant on competing low-energy phases such as relaxors and antiferroelectrics.
Research Center/Unit :
PhyTheMa
Disciplines :
Physics
Author, co-author :
Cascos, Vanessa A.; University of Kent > School of Physical Sciences
Computational resources are provided by the Consortium des Equipements de Calcul Intensif (CECI) funded by the F.R.S-FNRS (Grant 2.5020.11) and the Tier-1supercomputer of the Fed́eŕation Wallonie-Bruxelles funded by the Walloon region (Grant 1117545)
Uchino, K. Glory of piezoelectric perovskites. Sci. Technol. Adv. Mater. 2015, 16, 10.1088/1468-6996/16/4/046001.
Courjal, N.; Bernal, M.-P.; Caspar, A.; Ulliac, G.; Bassignot, F.; Gauthier-Manuel, L.; Suarez, M., Lithium niobate optical waveguides and microwaveguides. In Emerging waveguide technology [Online]; You, K. Y., Ed.; IntechOpen, 2018 https://www.intechopen.com/books/emerging-waveguide-technology/lithium-niobate-optical-waveguides-and-microwaveguides (accessed July 23, 2020).
Scott, J. F. Applications of modern ferroelectrics. Science 2007, 315 (5814), 954-959, 10.1126/science.1129564
de Araujo, C. A-P.; Cuchiaro, J. D.; McMillan, L. D.; Scott, M. C.; Scott, J. F. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 1995, 374, 627-629, 10.1038/374627a0
Benedek, N. A.; Rondinelli, J. M.; Djani, H.; Ghosez, P.; Lightfoot, P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans. 2015, 44, 10543-10558, 10.1039/C5DT00010F
Xu, K.; Lu, X. Z.; Xiang, H. J. Designing new ferroelectrics with a general strategy. npj Quantum Materials 2017, 2, 1-8, 10.1038/s41535-016-0001-8
Cammarata, A.; Rondinelli, J. M. Ferroelectricity from coupled cooperative Jahn-Teller distortions and octahedral rotations in ordered Ruddlesden-Popper manganates. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 014102, 10.1103/PhysRevB.92.014102
Dvorak, V. Improper ferroelectrics. Ferroelectrics 1974, 7, 1-9, 10.1080/00150197408237942
Bousquet, E.; Dawber, M.; Stucki, N.; Lichtensteiger, C.; Hermet, P.; Gariglio, S.; Triscone, J.-M.; Ghosez, P. Improper ferroelectricity in perovskite oxide articifial superlattices. Nature 2008, 452, 732-736, 10.1038/nature06817
Benedek, N. A.; Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. Phys. Rev. Lett. 2011, 106, 107204, 10.1103/PhysRevLett.106.107204
Yoshida, S.; Akamatsu, H.; Tsuji, R.; Hernandez, O.; Padmanabhan, H.; Sen Gupta, A.; Gibbs, A. S.; Mibu, K.; Murai, S.; Rondinelli, J. M.; Gopalan, V.; Tanaka, K.; Fujita, K. Hybrid improper ferroelectricity in (Sr,Ca)3Sn2O7 and beyond: universal relationship between ferroelectric transition temperature and tolerance factor in n = 2 Ruddlesden-Popper phases. J. Am. Chem. Soc. 2018, 140, 15690-15700, 10.1021/jacs.8b07998
Yoshida, S.; Fujita, K.; Akamatsu, H.; Hernandez, O.; Sen Gupta, A.; Brown, F. G.; Padmanabhan, H.; Gibbs, A. S.; Kuge, T.; Tsuji, R.; Murai, S.; Rondinelli, J. M.; Gopalan, V.; Tanaka, K. Ferroelectric Sr3Zr2O7: competition between hybrid improper ferroelectric and antiferroelectric mechanisms. Adv. Funct. Mater. 2018, 28, 1801856, 10.1002/adfm.201801856
Ablitt, C.; McCay, H.; Craddock, S.; Cooper, L.; Reynolds, E.; Mostofi, A. A.; Bristowe, N. C.; Murray, C. A.; Senn, M. S. Tolerance factor control of uniaxial negative thermal expansion in a layered perovskite. Chem. Mater. 2020, 32, 605-610, 10.1021/acs.chemmater.9b04512
Chen, W. T.; Ablitt, C.; Bristowe, N. C.; Mostofi, A. A.; Saito, T.; Shimakawa, Y.; Senn, M. S. Negative thermal expansion in high pressure layered perovskite Ca2GeO4. Chem. Commun. 2019, 55, 2984-2987, 10.1039/C8CC09614G
Birol, T.; Benedek, N. A.; Fennie, C. J. Interface control of emergent ferroic order in Ruddlesden-Popper Srn+1TinO3n+1. Phys. Rev. Lett. 2011, 107, 257602, 10.1103/PhysRevLett.107.257602
Benedek, N. A. Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases. Inorg. Chem. 2014, 53, 3769-3777, 10.1021/ic500106a
Zhu, T.; Cohen, T.; Gibbs, A. S.; Zhang, W.; Halasyamani, P. S.; Hayward, M. A.; Benedek, N. A. Theory and neutrons combine to reveal a family of layered perovskites without inversion symmetry. Chem. Mater. 2017, 29, 9489-9497, 10.1021/acs.chemmater.7b03604
Zhu, T.; Gibbs, A. S.; Benedek, N. A.; Hayward, M. A. Complex structural phase transitions of the hybrid improper polar Dion-Jacobson oxides RbNdM2O7 and CsNdM2O7 (M = Nb, Ta). Chem. Mater. 2020, 32, 4340-4346, 10.1021/acs.chemmater.0c01304
Guo, Y.-Y.; Gibbs, A. S.; Perez-Mato, J. M.; Lightfoot, P. Unexpected phase transition sequence in the ferroelectric Bi4Ti3O12. IUCrJ 2019, 6, 438-446, 10.1107/S2052252519003804
McCabe, E. E.; Bousquet, E.; Stockdale, C. P. J.; Deacon, C. A.; Tran, T. T.; Halasyamani, P. S.; Stennett, M. C.; Hyatt, N. C. Proper ferroelectricity in the Dion-Jacobson material CsBi2Ti2NbO10: experiment and theory. Chem. Mater. 2015, 27, 8298-8309, 10.1021/acs.chemmater.5b03564
Wang, X.; Adhikari, J.; Smith, L. J. An Investigation of Distortions of the Dion-Jacobson Phase RbSr2Nb3O10 and Its Acid-Exchanged Form with 93Nb Solid State NMR and DFT Calculations. J. Phys. Chem. C 2009, 113, 17548-17559, 10.1021/jp902318v
Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 2011, 40, 4455-4463, 10.1039/c1cs15098g
Kim, H. G.; Tran, T. T.; Choi, W.; You, T.-S.; Halasyamani, P. S.; Ok, K. M. Two New Non-centrosymmetric n = 3 Layered Dion-Jacobson Perovskites: Polar RbBi2Ti2NbO10 and Nonpolar CsBi2Ti2TaO10. Chem. Mater. 2016, 28, 2424-2432, 10.1021/acs.chemmater.6b00778
Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65-71, 10.1107/S0021889869006558
Coelho, A. A. Indexing of powder patterns by iterative use of singular value decomposition. J. Appl. Crystallogr. 2003, 36, 86-95, 10.1107/S0021889802019878
Coelho, A. A. Topas Academic: General profile and structure analysis software for powder diffraction data; Bruker AXS: Karlsruhe, Germany, 2012.
Campbell, B. J.; Stokes, H. T.; Tanner, D. E.; Hatch, D. M. ISODISPLACE: a web-based tool for exploring structural distortions. J. Appl. Crystallogr. 2006, 39, 607-614, 10.1107/S0021889806014075
Sears, V. F. Neutron scattering lengths and cross sections. Neutron news 1992, 3, 26-37, 10.1080/10448639208218770
Ok, K. M.; Chi, E. O.; Halasyamani, P. S. Bulk characterisation methods for non-centrosymmetric materials: second harmonic generation, piezoelectricity, pyroelectricity and ferroelectricity. Chem. Soc. Rev. 2006, 35, 710-717, 10.1039/b511119f
Kortum, D. G.; Braun, W.; Herzog, G. Principles and techniques of diffuse-reflectance spectroscopy. Angew. Chem., Int. Ed. Engl. 1963, 2, 333-341, 10.1002/anie.196303331
Gonze, X.; Jollet, F.; Abreu Araujo, F.; Adams, D.; Amadon, B.; Applencourt, T.; Audouze, C.; Beuken, J.-M.; Bieder, J.; Bokhanchuk, A.; Bousquet, E.; Bruneval, F.; Caliste, D.; Cote, M.; Dahm, F.; Da Pieve, F.; Delaveau, M.; Di Gennaro, M.; Dorado, B.; Espejo, C.; Geneste, G.; Genovese, L.; Gerossier, A.; Giantomassi, M.; Gillet, Y.; Hamann, D.R.; He, L.; Jomard, G.; Laflamme Janssen, J.; Le Roux, S.; Levitt, A.; Lherbier, A.; Liu, F.; Lukacevic, I.; Martin, A.; Martins, C.; Oliveira, M.J.T.; Ponce, S.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Romero, A.H.; Rousseau, B.; Rubel, O.; Shukri, A.A.; Stankovski, M.; Torrent, M.; Van Setten, M.J.; Van Troeye, B.; Verstraete, M.J.; Waroquiers, D.; Wiktor, J.; Xu, B.; Zhou, A.; Zwanziger, J.W. et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 2016, 205, 106-131, 10.1016/j.cpc.2016.04.003
Gonze, X.; Amadon, B.; Antonius, G.; Arnardi, F.; Baguet, L.; Beuken, J.-M.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; Brouwer, N.; Bruneval, F.; Brunin, G.; Cavignac, T.; Charraud, J.-B.; Chen, W.; Cote, M.; Cottenier, S.; Denier, J.; Geneste, G.; Ghosez, P.; Giantomassi, M.; Gillet, Y.; Gingras, O.; Hamann, D. R.; Hautier, G.; He, X.; Helbig, N.; Holzwarth, N.; Jia, Y.; Jollet, F.; Lafargue-Dit-Hauret, W.; Lejaeghere, K.; Marques, M. A.L.; Martin, A.; Martins, C.; Miranda, H. P.C.; Naccarato, F.; Persson, K.; Petretto, G.; Planes, V.; Pouillon, Y.; Prokhorenko, S.; Ricci, F.; Rignanese, G.-M.; Romero, A. H.; Schmitt, M. M.; Torrent, M.; van Setten, M. J.; Van Troeye, B.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W. The ABINIT project: impact, environment and recent developments. Comput. Phys. Commun. 2020, 248, 107042, 10.1016/j.cpc.2019.107042
van Setten, M.J.; Giantomassi, M.; Bousquet, E.; Verstraete, M.J.; Hamann, D.R.; Gonze, X.; Rignanese, G.-M. The PSEUDODOJO: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39-54, 10.1016/j.cpc.2018.01.012
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 085117 10.1103/PhysRevB.88.085117
Bellaiche, L.; Vanderbilt, D. Virtual crystal approximation application to dielectric and piezoelectric properties of perovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 7877-7882, 10.1103/PhysRevB.61.7877
Gonze, X.; Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors and interatomic force constants from density functional perturbation theory. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 55, 10355-10368, 10.1103/PhysRevB.55.10355
Wu, X.; Vanderbilt, D.; Hamann, D. R. Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 035105 10.1103/PhysRevB.72.035105
Hamann, D. R.; Rabe, K. M.; Vanderbilt, D. Generalized-gradient-functional treatment of strain in density-functional perturbation theory. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 033102 10.1103/PhysRevB.72.033102
King-Smith, R. D.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 47, 1651-1654, 10.1103/PhysRevB.47.1651
Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972, B28, 3384-3392, 10.1107/S0567740872007976
Woodward, P. M. Octahedral tilting in perovskites. 1. Geometrical considerations. Acta Crystallogr., Sect. B: Struct. Sci. 1997, B53, 32-43, 10.1107/S0108768196010713
Howard, C. J.; Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr., Sect. B: Struct. Sci. 1998, B54, 782-789, 10.1107/S0108768198004200
Aleksandrov, K. S. A2BX4. Kristallographia 1987, 32, 937
Aleksandrov, K. S.; Bartolome, J. Octahedral tilt phases in perovskite-like crystals with slabs containing an even number of octahedral layers. J. Phys.: Condens. Matter 1994, 6, 8219-8235, 10.1088/0953-8984/6/40/013
Hatch, D. M.; Stokes, H. T.; Aleksandrov, K. S.; Misyul, S. V. Phase transitions in the perovskite-like A2BO4 structure. Phys. Rev. B: Condens. Matter Mater. Phys. 1989, 39, 9282, 10.1103/PhysRevB.39.9282
Aleksandrov, K. S.; Beznosikov, B. V.; Misyul, S. V. Successive phase transitions in crystals of K2MgF4-type structure. Phys. Status Solidi A 1987, 104, 529-543, 10.1002/pssa.2211040204
Aleksandrov, K. S. Structural phase transitions in layered perovskite-like crystals. Kristallographia 1995, 40, 279-301
Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 1985, B41, 244-247, 10.1107/S0108768185002063
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, A32, 751, 10.1107/S0567739476001551
Warren, B. E. X-ray diffraction in random layer lattices. Phys. Rev. 1941, 59 (9), 693-698, 10.1103/PhysRev.59.693
Arnold, D. C. Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: a review. IEEE Transactions on Ultrasonics, ferroelectrics and frequency control 2015, 62, 62-82, 10.1109/TUFFC.2014.006668
Aurivillius, B. Mixed bismuth oxides with layer lattices 2: the structure of Bi4Ti3O12. Arkiv for Kemi 1949, 1, 463-480
Garcia-Castro, A. C.; Spaldin, N. A.; Romero, A. H.; Bousquet, E. Geometric ferroelectricity in fluoroperovskites. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 104107, 10.1103/PhysRevB.89.104107
Kim, H. G.; Yoo, J. S.; Ok, K. M. Second harmonic generation (SHG) and photoluminescence properties of noncentrosymmetric layered perovskite solid solutions, CsBi1-xEuxNb2O7. J. Mater. Chem. C 2015, 3, 5625-5630, 10.1039/C5TC00328H
McCabe, E. E.; Greaves, C. Structural and magnetic characterisation of Bi2Sr1.4La0.6Nb2MnO12 and its relationship to Bi2Sr2Nb2MnO12. J. Mater. Chem. 2005, 15, 177-182, 10.1039/B413732A
McCabe, E. E.; Greaves, C. Structural and magnetic characterisation of Aurivillius material Bi2Sr2Nb2.5Fe0.5O12. J. Solid State Chem. 2008, 181, 3051-3056, 10.1016/j.jssc.2008.08.004
Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477-485, 10.1007/BF01507527
Benedek, N. A.; Fennie, C. J. Why are there so few perovskite ferroelectrics. J. Phys. Chem. C 2013, 117, 13339-13349, 10.1021/jp402046t
Wong-Ng, W.; Huang, Q.; Cook, L. P.; Levin, I.; Kaduk, J. A.; Mighell, A. D.; Suh, J. Crystal chemistry and crystallography of the Aurivillius phase Bi5AgNb4O18. J. Solid State Chem. 2004, 177, 3359-3367, 10.1016/j.jssc.2004.05.040
Goff, R. J.; Lightfoot, P. Structural phase transitions in the relaxor ferroelectric Pb2Bi4Ti5O18. J. Solid State Chem. 2009, 182, 2626-2631, 10.1016/j.jssc.2009.06.038
Kumar, S.; Ochoa, D. A.; Garcia, J. E.; Varma, K. B. R. Relaxor ferroelectric behaviour and structural aspects of SrNaBi2Nb3O12. J. Am. Ceram. Soc. 2012, 95, 1339-1342, 10.1111/j.1551-2916.2011.04954.x
Cross, L. E. Relaxor ferroelectrics. Ferroelectrics 1987, 76, 241-267, 10.1080/00150198708016945
Levin, I.; Keeble, D. S.; Cibin, G.; Playford, H. Y.; Eremenko, M.; Krayzman, V.; Laws, W. J.; Reaney, I. M. Nanosclae polar heterogeneities and branching Bi displacement directions in K0.5Bi0.5TiO3. Chem. Mater. 2019, 31, 2450-2458, 10.1021/acs.chemmater.8b05187
Stone, G.; Ophus, C.; Birol, T.; Ciston, J.; Lee, C.-H.; Wang, K.; Fennie, C. J.; Schlom, D. G.; Alem, N.; Gopalan, V. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide. Nat. Commun. 2016, 7, 12572, 10.1038/ncomms12572
Pomiro, F.; Ablitt, C.; Bristowe, N. C.; Mostofi, A. A.; Won, C.; Cheong, S.-W.; Senn, M. S. From first to second order phase transitions in hybrid-improper ferroelectrics through entropy stabilisation. Phys. Rev. B: Condens. Matter Mater. Phys. 2020, 102, 014101, 10.1103/PhysRevB.102.014101
Hyatt, N. C.; Corkhill, C. L.; Stennett, M. C.; Hand, R. J.; Gardner, L. J.; Thorpe, C. L. The HADES facility for High Activity Decommissioning Engineering and Science: part of the UK National Nuclear User Facility. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 818, 012022 10.1088/1757-899X/818/1/012022