B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 241102 (2016).
B. Brügmann, J. A. Gonzalez, M. Hannam, S. Husa, U. Sperhake, and W. Tichy, Calibration of Moving Puncture Simulations, Phys. Rev. D 77, 024027 (2008).
R. O'Shaughnessy, L. London, J. Healy, and D. Shoemaker, Precession During Merger: Strong Polarization Changes Are Observationally Accessible Features of Strong-Field Gravity During Binary Black Hole Merger, Phys. Rev. D 87, 044038 (2013).
M. A. Scheel, M. Giesler, D. A. Hemberger, G. Lovelace, K. Kuper, M. Boyle, B. Szilágyi, and L. E. Kidder, Improved Methods for Simulating Nearly Extremal Binary Black Holes, Classical Quantum Gravity 32, 105009 (2015).
T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilágyi, On the Accuracy and Precision of Numerical Waveforms: Effect of Waveform Extraction Methodology, arXiv:1512.06800.
C. O. Lousto, J. Healy, and H. Nakano, Spin Flips in Generic Black Hole Binaries, Phys. Rev. D 93, 044031 (2016).
B. Szilágyi, J. Blackman, A. Buonanno, A. Taracchini, H. P. Pfeiffer, M. A. Scheel, T. Chu, L. E. Kidder, and Y. Pan, Approaching the Post-Newtonian Regime with Numerical Relativity: A Compact-Object Binary Simulation Spanning 350 Gravitational-Wave Cycles, Phys. Rev. Lett. 115, 031102 (2015).
P. Kumar, K. Barkett, S. Bhagwat, N. Afshari, D. A. Brown, G. Lovelace, M. A. Scheel, and B. Szilgyi, Accuracy and Precision of Gravitational-Wave Models of Inspiraling Neutron Star-Black Hole Binaries with Spin: Comparison with Matter-Free Numerical Relativity in the Low-Frequency Regime, Phys. Rev. D 92, 102001 (2015).
C. O. Lousto and J. Healy, Flip-Flopping Binary Black Holes, Phys. Rev. Lett. 114, 141101 (2015).
B. P. Abbott et al. (Virgo Collaboration and LIGO Scientific Collaboration), Directly Comparing GW150914 with Numerical Solutions of Einstein's Equations for Binary Black Hole Coalescence, arXiv:1606.01262.
J. Blackman, S. E. Field, C. R. Galley, B. Szilgyi, M. A. Scheel, M. Tiglio, and D. A. Hemberger, Fast and Accurate Prediction of Numerical Relativity Waveforms from Binary Black Hole Coalescences Using Surrogate Models, Phys. Rev. Lett. 115, 121102 (2015).
A. Buonanno and T. Damour, Effective One-Body Approach to General Relativistic Two-Body Dynamics, Phys. Rev. D 59, 084006 (1999).
A. Buonanno and T. Damour, Transition from Inspiral to Plunge in Binary Black Hole Coalescences, Phys. Rev. D 62, 064015 (2000).
A. Taracchini et al., Effective-One-Body Model for Black-Hole Binaries with Generic Mass Ratios and Spins, Phys. Rev. D 89, 061502 (2014).
M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms, Phys. Rev. Lett. 113, 151101 (2014).
Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H. Mroué, H. P. Pfeiffer,M. A. Scheel, and B. Szilgyi, Inspiral-Merger-Ringdown Waveforms of Spinning, Precessing Black-Hole Binaries in the Effective-One-Body Formalism, Phys. Rev. D 89, 084006 (2014).
S. Babak, A. Taracchini, and A. Buonanno (to be published).
When generating a precessing BBH waveform with mass ratio, total mass, and spin magnitudes equal to the median values reported in the "Overall" column of Table I, starting from 20 Hz, we find that precessing EOBNR is a factor of 450 (3) slower than precessing IMRPhenom (nonprecessing EOBNR).
J. Aasi et al. (LIGO Collaboration and Virgo Collaboration), Parameter Estimation for Compact Binary Coalescence Signals with the First Generation Gravitational-Wave Detector Network, Phys. Rev. D 88, 062001 (2013).
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophysical Implications of the Binary Black-Hole Merger GW150914, Astrophys. J. 818, L22 (2016).
In the LAL, as well as in technical publications, the precessing EOBNR model that we use is called SEOBNRv3.
T. Damour, Coalescence of Two Spinning Black Holes: An Effective One-Body Approach, Phys. Rev. D 64, 124013 (2001).
A. Buonanno, Y. Chen, and T. Damour, Transition from Inspiral to Plunge in Precessing Binaries of Spinning Black Holes, Phys. Rev. D 74, 104005 (2006).
T. Damour, P. Jaranowski, and G. Schaefer, Effective One Body Approach to the Dynamics of Two Spinning Black Holes with Next-to-Leading Order Spin-Orbit Coupling, Phys. Rev. D 78, 024009 (2008).
E. Barausse and A. Buonanno, An Improved Effective-One-Body Hamiltonian for Spinning Black-Hole Binaries, Phys. Rev. D 81, 084024 (2010).
E. Barausse and A. Buonanno, Extending the Effective-One-Body Hamiltonian of Black-Hole Binaries to Include Nextto-Next-to-Leading Spin-Orbit Couplings, Phys. Rev. D 84, 104027 (2011).
T. Damour and A. Nagar, New Effective-One-Body Description of Coalescing Nonprecessing Spinning Black-Hole Binaries, Phys. Rev. D 90, 044018 (2014).
L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Relativ. 17, 2 (2014).
T. Damour and A. Nagar, Faithful Effective-One-Body Waveforms of Small-Mass-Ratio Coalescing Black-Hole Binaries, Phys. Rev. D 76, 064028 (2007).
T. Damour, B. R. Iyer, and A. Nagar, Improved Resummation of Post-Newtonian Multipolar Waveforms from Circularized Compact Binaries, Phys. Rev. D 79, 064004 (2009).
Y. Pan, A. Buonanno, R. Fujita, E. Racine, and H. Tagoshi, Post-Newtonian Factorized Multipolar Waveforms for Spinning, Non-precessing Black-Hole Binaries, Phys. Rev. D 83, 064003 (2011)
Y. Pan, A. Buonanno, R. Fujita, E. Racine, and H. Tagoshi, Post-Newtonian Factorized Multipolar Waveforms for Spinning, Non-precessing Black-Hole Binaries, Phys. Rev. D 87, 109901(E) (2013).
C. V. Vishveshwara, Scattering of Gravitational Radiation by a Schwarzschild Black-Hole, Nature (London) 227, 936 (1970).
W. H. Press, Long Wave Trains of Gravitational Waves from a Vibrating Black Hole, Astrophys. J. 170, L105 (1971).
S. Chandrasekhar and S. L. Detweiler, The Quasi-Normal Modes of the Schwarzschild Black Hole, Proc. R. Soc. A A344, 441 (1975).
A. H. Mroué et al., Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy, Phys. Rev. Lett. 111, 241104 (2013).
E. Barausse, A. Buonanno, S. A. Hughes, G. Khanna, S.O'Sullivan, and Y. Pan, Modeling Multipolar Gravitational-Wave Emission from Small Mass-Ratio Mergers, Phys. Rev. D 85, 024046 (2012).
A. Taracchini, A. Buonanno, G. Khanna, and S. A. Hughes, Small Mass Plunging into a Kerr Black Hole: Anatomy of the Inspiral-Merger-Ringdown Waveforms, Phys. Rev. D 90, 084025 (2014).
A. Buonanno, Y.-b. Chen, Y. Pan, and M. Vallisneri, A Quasi-Physical Family of Gravity-Wave Templates for Precessing Binaries of Spinning Compact Objects: II. Application to Double-Spin Precessing Binaries, Phys. Rev. D 70, 104003 (2004).
A. Buonanno, Y.-b. Chen, Y. Pan, and M. Vallisneri, A Quasi-Physical Family of Gravity-Wave Templates for Precessing Binaries of Spinning Compact Objects: II. Application to Double-Spin Precessing Binaries, Phys. Rev. D 74, 029902(E) (2006).
M. Boyle, R. Owen, and H. P. Pfeiffer, A Geometric Approach to the Precession of Compact Binaries, Phys. Rev. D 84, 124011 (2011).
P. Schmidt, M. Hannam, S. Husa, and P. Ajith, Tracking the Precession of Compact Binaries from Their Gravitational-Wave Signal, Phys. Rev. D 84, 024046 (2011).
R. O'Shaughnessy, B. Vaishnav, J. Healy, Z. Meeks, and D. Shoemaker, Efficient Asymptotic Frame Selection for Binary Black Hole Spacetimes Using Asymptotic Radiation, Phys. Rev. D 84, 124002 (2011).
P. Schmidt, M. Hannam, and S. Husa, Towards Models of Gravitational Waveforms from Generic Binaries: A Simple Approximate Mapping Between Precessing and Nonprecessing Inspiral Signals, Phys. Rev. D 86, 104063 (2012).
P. Schmidt, F. Ohme, and M. Hannam, Towards Models of Gravitational Waveforms from Generic Binaries II: Modelling Precession Effects with a Single Effective Precession Parameter, Phys. Rev. D 91, 024043 (2015).
In LAL, this precessing model is called IMRPhenomPv2.
S. Khan, S. Husa, M. Hannam, F. Ohme, M. Pürrer, X. J. Forteza, and A. Bohé, Frequency-Domain Gravitational Waves from Nonprecessing Black-Hole Binaries. II. A Phenomenological Model for the Advanced Detector Era, Phys. Rev. D 93, 044007 (2016).
However, 2,±1 modes in the inertial frame of the observer are generated by the change of frame.
P. Kumar, T. Chu, H. Fong, H. P. Pfeiffer, M. Boyle, D. A. Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilagyi, Accuracy of Binary Black Hole Waveform Models for Aligned-Spin Binaries, Phys. Rev. D 93, 104050 (2016).
J. Veitch et al., Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALInference Software Library, Phys. Rev. D 91, 042003 (2015).
By construction, the precessing IMRPhenom inertial-frame polarizations h+,× depend on the arrival time and phase exactly as they would in a model that includes only (2,±2) inertial-frame modes. Thus, although precessing IMRPhenom does include (2,±1) inertial-frame modes, the analytical marginalization that we just discussed is exact.
T. Bayes and R. Price, An Essay Towards Solving a Problem in the Doctrine of Chances, Phil. Trans. R. Soc. London 53, 370 (1763).
E. T. Jaynes, Probability Theory: The Logic of Science, edited by G. Larry Bretthorst (Cambridge University Press, Cambridge, 2003).
C. Cutler and E. E. Flanagan, Gravitational Waves from Merging Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Wave Form?, Phys. Rev. D 49, 2658 (1994).
B. P. Abbott et al. (LIGO Scientific Collaboration), Calibration of the Advanced LIGO Detectors for the Discovery of the Binary Black-Hole Merger GW150914, https://dcc .ligo.org/LIGO-P1500248/public/main.
D. B. Rubin, The Bayesian Bootstrap, Annali di statistica 9, 130 (1981).
For n samples, this involves generating 1000 realizations of weights according to the (n -1)-variate Dirichlet distribution.
N. K. Johnson-McDaniel et al., Determining the Final Spin of a Binary Black Hole System Including In-Plane Spins: Method and Checks of Accuracy, Technical Report No. LIGO-T1600168 (LIGO Project, 2016).
E. Racine, Analysis of Spin Precession in Binary Black Hole Systems Including Quadrupole-Monopole Interaction, Phys. Rev. D 78, 044021 (2008).
P. Ajith et al., Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Non-precessing Spins, Phys. Rev. Lett. 106, 241101 (2011).
L. Santamaría, F. Ohme, P. Ajith, B. Brügmann, N. Dorband, M. Hannam, S. Husa, P. Moesta, D. Pollney, C. Reisswig, E. L. Robinson, J. Seiler, and B. Krishnan, Matching Post-Newtonian and Numerical Relativity Waveforms: Systematic Errors and a New Phenomenological Model for Non-precessing Black Hole Binaries, Phys. Rev. D 82, 064016 (2010).
P. Schmidt and I. Harry, Numerical Relativity Injection Infrastructure (unpublished).
P. Schmidt and C. Galley, Reduced-Order Spline Interpolants of Numerical Relativity Waveforms (unpublished).
See http://www.black-holes.org/SpEC.html.
See http://www.black-holes.org/waveforms.
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914, https://dcc.ligo.org/LIGO-P1500217/public/main.