B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Properties of the binary black hole merger GW150914, arXiv:1602.03840.
B. P. Abbott (LIGO Scientific Collaboration), LIGO: The laser interferometer gravitational-wave observatory, Rep. Prog. Phys. 72, 076901 (2009). RPPHAG 0034-4885 10.1088/0034-4885/72/7/076901
T. Accadia (Virgo Collaboration), Virgo: A laser interferometer to detect gravitational waves, J. Instrum. 7, P03012 (2012). JIONAS 1748-0221 10.1088/1748-0221/7/03/P03012
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Astrophysical implications of the binary black hole merger GW150914, Astrophys. J. Lett. 818, L22 (2016). AJLEEY 2041-8205 10.3847/2041-8205/818/2/L22
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Tests of general relativity with GW150914, arXiv:1602.03841.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), preceding Letter, GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes, Phys. Rev. Lett. 116, 131102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.131102
B. P. Abbott (LIGO Scientific Collaboration, Virgo Collaboration, Australian Square Kilometer Array Pathfinder (ASKAP) Collaboration, BOOTES Collaboration, Dark Energy Survey and the Dark Energy Camera GW-EM Collaborations, Fermi GBM Collaboration, Fermi LAT Collaboration, GRAvitational Wave Inaf TeAm (GRAWITA), INTEGRAL Collaboration, Intermediate Palomar Transient Factory (iPTF) Collaboration, The InterPlanetary Network, J-GEM Collaboration, La Silla-QUEST Survey, Liverpool Telescope Collaboration, Low Frequency Array (LOFAR) Collaboration, MASTER Collaboration, MAXI Collaboration, Murchison Wide-field Array (MWA) Collaboration, PanSTARRS Collaboration, PESSTO Collaboration, Pi of the Sky Collaboration, SkyMapper Collaboration, Swift Collaboration, TAROT, Zadko, Algerian National Observatory, and C2PU Collaboration, TOROS Collaboration and VISTA Collaboration), Localization and broadband follow-up of the gravitational-wave transient GW150914, arXiv:1602.08492.
S. Adrián-Martínez (ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, and Virgo Collaboration), High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube, arXiv:1602.05411.
K. S. Thorne, in 300 Years of Gravitation, edited by S. Hawking and W. Israel (Cambridge University Press, Cambridge, England, 1987), pp. 330-458.
J. Miller, L. Barsotti, S. Vitale, P. Fritschel, M. Evans, and D. Sigg, Prospects for doubling the range of Advanced LIGO, Phys. Rev. D 91, 062005 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.062005
L. S. Finn, Binary inspiral, gravitational radiation, and cosmology, Phys. Rev. D 53, 2878 (1996). PRVDAQ 0556-2821 10.1103/PhysRevD.53.2878
P. A. R. Ade (Planck Collaboration), Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571, A16 (2014). AAEJAF 0004-6361 10.1051/0004-6361/201321591
P. Ajith, Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins, Phys. Rev. Lett. 106, 241101 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.241101
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914, arXiv:1602.03844.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914, arXiv:1602.03842.
B. P. Abbott (LIGO Scientific Collaboration), The sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy, LIGO Report No. LIGO-P1500260 2016, https://dcc.ligo.org/LIGO-P1500260/public/main.
S. M. Aston, Update on quadruple suspension design for Advanced LIGO, Classical Quantum Gravity 29, 235004 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/23/235004
V. B. Braginski, V. P. Mitrofanov, and O. A. Okhrimenko, Oscillators for free-mass gravitational antennas, JETP Lett. 55, 432 (1992). JTPLA2 0021-3640
A. V. Cumming, Design and development of the advanced LIGO monolithic fused silica suspension, Classical Quantum Gravity 29, 035003 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/3/035003
F. Matichard, Seismic isolation of Advanced LIGO: Review of strategy, instrumentation and performance, Classical Quantum Gravity 32, 185003 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/18/185003
S. Wen, Hydraulic external pre-isolator system for LIGO, Classical Quantum Gravity 31, 235001 (2014). CQGRDG 0264-9381 10.1088/0264-9381/31/23/235001
G. Cella, in Recent Developments in General Relativity, edited by B. Casciaro, D. Fortunato, M. Francaviglia, and A. Masiello (Springer, Milan, 2000), pp. 495-503.
J. C. Driggers, J. Harms, and R. X. Adhikari, Subtraction of Newtonian noise using optimized sensor arrays, Phys. Rev. D 86, 102001 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.86.102001
P. R. Saulson, Thermal noise in mechanical experiments, Phys. Rev. D 42, 2437 (1990). PRVDAQ 0556-2821 10.1103/PhysRevD.42.2437
Y. Levin, Internal thermal noise in the LIGO test masses: A direct approach, Phys. Rev. D 57, 659 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.659
G. Harry, T. P. Bodiya, and R. DeSalvo, Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University Press, Cambridge, England, 2012).
G. M. Harry, Titania-doped tantala/silica coatings for gravitational-wave detection, Classical Quantum Gravity 24, 405 (2007). CQGRDG 0264-9381 10.1088/0264-9381/24/2/008
M. Granata, Mechanical loss in state-of-the-art amorphous optical coatings, Phys. Rev. D 93, 012007 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.012007
R. Flaminio, J. Franc, C. Michel, N. Morgado, L. Pinard, and B. Sassolas, A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors, Classical Quantum Gravity 27, 084030 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084030
J. Agresti, G. Castaldi, R. DeSalvo, V. Galdi, V. Pierro, and I. M. Pinto, Optimized multilayer dielectric mirror coatings for gravitational wave interferometers, Proc. SPIE Int. Soc. Opt. Eng. 6286, 628608 (2006). 10.1117/12.678977
A. E. Villar, Measurement of thermal noise in multilayer coatings with optimized layer thickness, Phys. Rev. D 81, 122001 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.122001
C. M. Caves, Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer, Phys. Rev. Lett. 45, 75 (1980); PRLTAO 0031-9007 10.1103/PhysRevLett.45.75
C. M. Caves Quantum-mechanical noise in an interferometer, Phys. Rev. D 23, 1693 (1981). PRVDAQ 0556-2821 10.1103/PhysRevD.23.1693
V. B. Braginsky, F. Y. Khalili, and K. S. Thorne, Quantum Measurement (Cambridge University Press, Cambridge, England, 1992).
D. E. McClelland, N. Mavalvala, Y. Chen, and R. Schnabel, Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors, Laser Photonics Rev. 5, 677 (2011). LPRAB8 1863-8899 10.1002/lpor.201000034
A. Effler, R. M. S. Schofield, V. V. Frolov, G. González, K. Kawabe, J. R. Smith, J. Birch, and R. McCarthy, Environmental influences on the LIGO gravitational wave detectors during the 6th science run, Classical Quantum Gravity 32, 035017 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/3/035017
T. T. Fricke, DC readout experiment in Enhanced LIGO, Classical Quantum Gravity 29, 065005 (2012). CQGRDG 0264-9381 10.1088/0264-9381/29/6/065005
B. P. Abbott (LIGO Scientific Collaboration), Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914, arXiv:1602.03845.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Observing gravitational-wave transient GW150914 with minimal assumptions, arXiv:1602.03843.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), GW150914: First results from the search for binary black hole coalescence with Advanced LIGO, arXiv:1602.03839.
E. Goetz, Precise calibration of LIGO test mass actuators using photon radiation pressure, Classical Quantum Gravity 26, 245011 (2009). CQGRDG 0264-9381 10.1088/0264-9381/26/24/245011
P. Kwee, Stabilized high-power laser system for the gravitational wave detector Advanced LIGO, Opt. Express 20, 10617 (2012). OPEXFF 1094-4087 10.1364/OE.20.010617
C. L. Mueller, The Advanced LIGO input optics, Rev. Sci. Instrum. 87, 014502 (2016). RSINAK 0034-6748 10.1063/1.4936974
A. F. Brooks, Direct measurement of absorption-induced wavefront distortion in high optical power systems, Appl. Opt. 48, 355 (2009). APOPAI 0003-6935 10.1364/AO.48.000355
R. W. P. Drever, The Detection of Gravitational Waves, edited by D. G. Blair (Cambridge University Press, Cambridge, England, 1991) pp. 306.
R. W. P. Drever, in Quantum Optics, Experimental Gravity, and Measurement Theory, NATO ASI Series B, Vol. 94, edited by P. Meystre and M. O. Scully (Plenum Press, New York, 1983), pp. 503-514.
R. Schilling (private communication).
B. J. Meers, Recycling in laser-interferometric gravitational-wave detectors, Phys. Rev. D 38, 2317 (1988). PRVDAQ 0556-2821 10.1103/PhysRevD.38.2317
J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W. Winkler, and K. Danzmann, Resonant sideband extraction: A new configuration for interferometric gravitational wave detectors, Phys. Lett. A 175, 273 (1993). PYLAAG 0375-9601 10.1016/0375-9601(93)90620-F
A. Staley, D. Martynov, Achieving resonance in the Advanced LIGO gravitational-wave interferometer, Classical Quantum Gravity 31, 245010 (2014). CQGRDG 0264-9381 10.1088/0264-9381/31/24/245010
R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B 31, 97 (1983). APPCDL 0721-7269 10.1007/BF00702605
P. Fritschel, R. Bork, G. González, N. Mavalvala, D. Ouimette, H. Rong, D. Sigg, and M. Zucker, Readout and control of a power-recycled interferometric gravitational-wave antenna, Appl. Opt. 40, 4988 (2001). APOPAI 0003-6935 10.1364/AO.40.004988
E. Morrison, B. J. Meers, D. I. Robertson, and H. Ward, Automatic alignment of optical interferometers, Appl. Opt. 33, 5041 (1994). APOPAI 0003-6935 10.1364/AO.33.005041
L. Barsotti, M. Evans, and P. Fritschel, Alignment sensing and control in Advanced LIGO, Classical Quantum Gravity 27, 084026 (2010). CQGRDG 0264-9381 10.1088/0264-9381/27/8/084026
C. Affeldt, Advanced techniques in GEO 600, Classical Quantum Gravity 31, 224002 (2014). CQGRDG 0264-9381 10.1088/0264-9381/31/22/224002
J. A. Sidles and D. Sigg, Optical torques in suspended Fabry-Perot interferometers, Phys. Lett. A 354, 167 (2006). PYLAAG 0375-9601 10.1016/j.physleta.2006.01.051
K. L. Dooley, L. Barsotti, R. X. Adhikari, M. Evans, T. T. Fricke, P. Fritschel, V. Frolov, K. Kawabe, and N. Smith-Lefebvre, Angular control of optical cavities in a radiation-pressure-dominated regime: The Enhanced LIGO case, J. Opt. Soc. Am. A 30, 2618 (2013). JOAOD6 0740-3232 10.1364/JOSAA.30.002618
V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, Analysis of parametric oscillatory instability in power recycled LIGO interferometer, Phys. Lett. A 305, 111 (2002). PYLAAG 0375-9601 10.1016/S0375-9601(02)01357-9
M. Evans, Observation of Parametric Instability in Advanced LIGO, Phys. Rev. Lett. 114, 161102 (2015). PRLTAO 0031-9007 10.1103/PhysRevLett.114.161102
Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto (KAGRA Collaboration), Interferometer design of the KAGRA gravitational wave detector, Phys. Rev. D 88, 043007 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.043007
B. Iyer, LIGO-India Report No. LIGO-M1100296, 2011, https://dcc.ligo.org/LIGO-M1100296/public/main.
B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo, Living Rev. Relativity 19, 1 (2016). 1433-8351 10.1007/lrr-2016-1