[en] We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; the other known gravitational-wave event, GW151226, falls below the search's sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-binary-black-hole transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper limits are stricter than those previously published by an order of magnitude.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Abbott, B. P.
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace struct. and adv. mecha. systems
J. Aasi, Characterization of the LIGO detectors during their sixth science run, Classical Quantum Gravity 32, 115012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/11/115012
F. Acernese, Advanced Virgo: A second-generation interferometric gravitational wave detector, Classical Quantum Gravity 32, 024001 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001
B. Abbott, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102
H. Lück, C. Affeldt, J. Degallaix, A. Freise, H. Grote, M. Hewitson, S. Hild, J. Leong, M. Prijatelj, K. A. Strain, B. Willke, H. Wittel, and K. Danzmann, The upgrade of GEO600, J. Phys. Conf. Ser. 228, 012012 (2010). JPCSDZ 1742-6588 10.1088/1742-6596/228/1/012012
Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, Interferometer design of the KAGRA gravitational wave detector, Phys. Rev. D 88, 043007 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.043007
J. Aasi, Prospects for observing and localizing gravitational-wave transients with Advanced LIGO and Advanced Virgo, Living Rev. Relativ. 19, 1 (2016). 1433-8351 10.1007/lrr-2016-1
B. Abbott, Observing gravitational-wave transient GW150914 with minimal assumptions, Phys. Rev. D 93, 122004 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.122004
J. Aasi, Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run, Phys. Rev. D 89, 122003 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.122003
S. Mohapatra, L. Cadonati, S. Caudill, J. Clark, C. Hanna, S. Klimenko, C. Pankow, R. Vaulin, G. Vedovato, and S. Vitale, Sensitivity comparison of searches for binary black hole coalescences with ground-based gravitational-wave detectors, Phys. Rev. D 90, 022001 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.90.022001
C. L. Fryer and K. C. B. New, Gravitational waves from gravitational collapse, Living Rev. Relativ. 14, 1 (2011). 1433-8351 10.12942/lrr-2011-1
T. Damour and A. Vilenkin, Gravitational radiation from cosmic (super)strings: Bursts, stochastic background, and observational windows, Phys. Rev. D 71, 063510 (2005). PRVDAQ 1550-7998 10.1103/PhysRevD.71.063510
B. P. Abbott, A first targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors, Phys. Rev. D 94, 102001 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.102001
K. Hurley and A. Rau, The Status and Future of the Third Inter- planetary Network, In: Gamma Ray Bursts, in AIP Conference Proceedings, No. 1133 (American Institute of Physics, Melville, NY, 2009), pp. 55-57, http://resolver.caltech.edu/CaltechAUTHORS:20160505-162423876.
J. Abadie, All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run, Phys. Rev. D 85, 122007 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.122007
J. Aasi, Characterization of the LIGO detectors during their sixth science run, Classical Quantum Gravity 32, 115012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/11/115012
J. B. Kanner, T. B. Littenberg, N. Cornish, M. Millhouse, E. Xhakaj, F. Salemi, M. Drago, G. Vedovato, and S. Klimenko, Leveraging waveform complexity for confident detection of gravitational waves, Phys. Rev. D 93, 022002 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.022002
T. B. Littenberg, J. B. Kanner, N. J. Cornish, and M. Millhouse, Enabling high confidence detections of gravitational-wave bursts, Phys. Rev. D 94, 044050 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.94.044050
R. Lynch, S. Vitale, R. Essick, E. Katsavounidis, and F. Robinet, An information-theoretic approach to the gravitational-wave burst detection problem, arXiv:1511.05955.
S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro, S. Tiwari, F. Da Silva, and G. Mitselmakher, Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors, Phys. Rev. D 93, 042004 (2016). PRVDAQ 1550-7998 10.1103/PhysRevD.93.042004
B. Abbott, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241103
B. Abbott, GW150914: First results from the search for binary black hole coalescence with Advanced LIGO, Phys. Rev. D 93, 122003 (2016). PRVDAQ 2470-0010 10.1103/PhysRevD.93.122003
B. Abbott, Binary Black Hole Mergers in the first Advanced LIGO Observing Run, Phys. Rev. X 6, 041015 (2016). PRXHAE 2160-3308 10.1103/PhysRevX.6.041015
B. P. Abbott, An all-sky search for long-duration gravitational wave transients with LIGO, Phys. Rev. D 93, 042005 (2016). PRVDAQ 1550-7998 10.1103/PhysRevD.93.042005
J. Abadie, All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run, Phys. Rev. D 85, 122007 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.122007
J. Abadie, All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run, Phys. Rev. D 81, 102001 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.102001
B. Abbott, Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914, Class. Quant. Grav. 33, 134001 (2016). CQGRDG 0264-9381 10.1088/0264-9381/33/13/134001
B. Abbott, Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914, arXiv:1602.03845.
C. Callihane and J.Kissel (private communication).
S. Klimenko, I. Yakushin, A. Mercer, and Guenakh Mitselmakher, Coherent method for detection of gravitational wave bursts, Classical Quantum Gravity 25, 114029 (2008). CQGRDG 0264-9381 10.1088/0264-9381/25/11/114029
N. J. Cornish and T. B. Littenberg, BayesWave: Bayesian Inference for Gravitational Wave Bursts and Instrument Glitches, Classical Quantum Gravity 32, 135012 (2015). CQGRDG 0264-9381 10.1088/0264-9381/32/13/135012
T. B. Littenberg and N. J. Cornish, Bayesian inference for spectral estimation of gravitational wave detector noise, Phys. Rev. D 91, 084034 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.91.084034
B. Abbott, Localization and broadband follow-up of the gravitational-wave transient GW150914, Astrophys. J. Lett. 826, L13 (2016). AJLEEY 2041-8213 10.3847/2041-8205/826/1/L13
F. Robinet, Omicron: An algorithm to detect and characterize transient noise in gravitational-wave detectors, https://tds.ego-gw.it/ql/?c=10651, 2015.
A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M. Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H. Mroué, H. P. Pfeiffer, M. A. Scheel, B. Szilágyi, N. W. Taylor, and A. Zenginoglu, Effective-one-body model for black-hole binaries with generic mass ratios and spins, Phys. Rev. D 89, 061502 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.061502
P. Kumar, K. Barkett, S. Bhagwat, N. Afshari, D. A. Brown, G. Lovelace, M. A. Scheel, and B. Szilágyi, Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin: Comparison with matter-free numerical relativity in the low-frequency regime, Phys. Rev. D 92, 102001 (2015). PRVDAQ 1550-7998 10.1103/PhysRevD.92.102001
J. Abadie (LIGO Scientific and Virgo Collaborations), Search for gravitational waves from intermediate mass binary black holes, Phys. Rev. D 85, 102004 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.102004
B. Abbott, Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 241102 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241102
G. J. Feldman and R. D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57, 3873 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.3873