B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett. 116, 131103 (2016).
T. Dal Canton et al., Implementing a Search for Aligned-Spin Neutron Star-Black Hole Systems with Advanced Ground Based Gravitational Wave Detectors, Phys. Rev. D 90, 082004 (2014).
S. A. Usman et al., An Improved Pipeline to Search for Gravitational Waves from Compact Binary Coalescence, arXiv:1508.02357.
A. H. Nitz, I.W. Harry, J. L. Willis, C. M. Biwer, D. A. Brown, L. P. Pekowsky, T. Dal Canton, A. R. Williamson, T. Dent, C. D. Capano et al., PyCBC Software, https:// github.com/ligo-cbc/pycbc.
K. Cannon, R. Cariou, A. Chapman, M. Crispin-Ortuzar, N. Fotopoulos et al., Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence, Astrophys. J. 748, 136 (2012).
S. Privitera, S. R. P. Mohapatra, P. Ajith, K. Cannon, N. Fotopoulos, M. A. Frei, C. Hanna, A. J. Weinstein, and J. T. Whelan, Improving the Sensitivity of a Search for Coalescing Binary Black Holes with Nonprecessing Spins in Gravitational Wave Data, Phys. Rev. D 89, 024003 (2014).
C. Messick, K. Blackburn, P. Brady, P. Brockill, K. Cannon, S. Caudill, S. J. Chamberlin, J. D. E. Creighton, R. Everett, C. Hanna et al., Analysis Framework for the Prompt Discovery of Compact Binary Mergers in Gravitational-wave Data, arXiv:1604.04324 [Phys. Rev. D (to be published)].
A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer,M. Boyle et al., Effective-One-Body Model for Black-Hole Binaries with Generic Mass Ratios and Spins, Phys. Rev. D 89, 061502 (2014).
M. Pürrer, Frequency Domain Reduced Order Model of Aligned-Spin Effective-One-Body Waveforms with Generic Mass-Ratios and Spins, Phys. Rev. D 93, 064041 (2016).
C. Capano, I. Harry, S. Privitera, and A. Buonanno, Implementing a Search for Gravitational Waves from Binary Black Holes with Nonprecessing Spin, Phys. Rev. D 93, 124007 (2016).
B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and J. D. E. Creighton, FINDCHIRP: An Algorithm for Detection of Gravitational Waves from Inspiraling Compact Binaries, Phys. Rev. D 85, 122006 (2012).
K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C. Searle, and A. J.Weinstein, Singular Value Decomposition Applied to Compact Binary Coalescence Gravitational-Wave Signals, Phys. Rev. D 82, 044025 (2010).
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914, Classical Quantum Gravity 33, 134001 (2016).
B. Allen, X2 Time-Frequency Discriminator for Gravitational Wave Detection, Phys. Rev. D 71, 062001 (2005).
K. Cannon, C. Hanna, and J. Peoples, Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation, arXiv:1504.04632 [Phys. Rev. D (to be published)].
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).
B. P. Abbott et al. (Virgo Collaboration and LIGO Scientific Collaboration), GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116, 241103 (2016).
P. A. R. Ade et al. (Planck Collaboration), Planck 2015 Results. XIII. Cosmological Parameters, arXiv:1502.01589.
L. Blanchet, T. Damour, B. R. Iyer, C.M. Will, and A. G. Wiseman, Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order, Phys. Rev. Lett. 74, 3515 (1995).
L. Blanchet, T. Damour, G. Esposito-Farèse, and B. R. Iyer, Gravitational Radiation from Inspiralling Compact Binaries Completed at the Third Post-Newtonian Order, Phys. Rev. Lett. 93, 091101 (2004).
T. Damour, P. Jaranowski, and G. Schaefer, Dimensional Regularization of the Gravitational Interaction of Point Masses, Phys. Lett. B 513, 147 (2001).
L. Blanchet, G. Faye, B. R. Iyer, and S. Sinha, The Third Post-Newtonian Gravitational Wave Polarisations and Associated Spherical Harmonic Modes for Inspiralling Compact Binaries in Quasi-circular Orbits, Classical Quantum Gravity 25, 165003 (2008).
T. Damour, B. R. Iyer, and A. Nagar, Improved Resummation of Post-Newtonian Multipolar Waveforms from Circularized Compact Binaries, Phys. Rev. D 79, 064004 (2009).
L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Relativ. 17, 2 (2014).
A. Buonanno and T. Damour, Transition from Inspiral to Plunge in Binary Black Hole Coalescences, Phys. Rev. D 62, 064015 (2000).
A. Buonanno and T. Damour, Effective One-Body Approach to General Relativistic Two-Body Dynamics, Phys. Rev. D 59, 084006 (1999).
T. Damour, P. Jaranowski, and G. Schaefer, Effective One Body Approach to the Dynamics of Two Spinning Black Holes with Next-to-Leading Order Spin-Orbit Coupling, Phys. Rev. D 78, 024009 (2008).
T. Damour and A. Nagar, An Improved Analytical Description of Inspiralling and Coalescing Black-Hole Binaries, Phys. Rev. D 79, 081503 (2009).
E. Barausse and A. Buonanno, An Improved Effective-One-Body Hamiltonian for Spinning Black-Hole Binaries, Phys. Rev. D 81, 084024 (2010).
F. Pretorius, Evolution of Binary Black Hole Spacetimes, Phys. Rev. Lett. 95, 121101 (2005).
M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Accurate Evolutions of Orbiting Black-Hole Binaries without Excision, Phys. Rev. Lett. 96, 111101 (2006).
J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van Meter, Gravitational Wave Extraction from an Inspiraling Configuration of Merging Black Holes, Phys. Rev. Lett. 96, 111102 (2006).
J. G. Baker, J. R. van Meter, S. T. McWilliams, J. Centrella, and B. J. Kelly, Consistency of Post-Newtonian Waveforms with Numerical Relativity, Phys. Rev. Lett. 99, 181101 (2007).
I. Hinder et al., Error-Analysis and Comparison to Analytical Models of Numerical Waveforms Produced by the NRAR Collaboration, Classical Quantum Gravity 31, 025012 (2014).
A. H. Mroué et al., Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy, Phys. Rev. Lett. 111, 241104 (2013).
S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme, X. J. Forteza, and A. Bohé, Frequency-Domain Gravitational Waves from Nonprecessing Black-Hole Binaries. I. New Numerical Waveforms and Anatomy of the Signal, Phys. Rev. D 93, 044006 (2016).
S. Khan, S. Husa, M. Hannam, F. Ohme, M. Prrer, X. J. Forteza, and A. Boh, Frequency-Domain Gravitational Waves from Non-precessing Black-Hole Binaries. II. A Phenomenological Model for the Advanced Detector Era, Phys. Rev. D 93, 044007 (2016).
M. Hannam, P. Schmidt, A. Bohé, L. Haegel, S. Husa, F. Ohme, G. Pratten, and M. Pürrer, Simple Model of Complete Precessing Black-Hole-Binary Gravitational Waveforms, Phys. Rev. Lett. 113, 151101 (2014).
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 241102 (2016).
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), preceding article, An Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model, Phys. Rev. X 6, 041014 (2016).
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Tests of General Relativity with GW150914, Phys. Rev. Lett. 116, 221101 (2016).
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914, arXiv:1602.03842.
B. P. Abbott et al. (Virgo Collaboration and LIGO Scientific Collaboration), Upper Limits on the Rates of Binary Neutron Star and Neutron-Star-Black-Hole Mergers from Advanced LIGO's First Observing Run, arXiv:1607.07456.
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO, Phys. Rev. D 93, 122003 (2016).
J. Aasi et al. (LIGO Scientific Collaboration), Advanced LIGO, Class. Quant. Grav. 32, 074001 (2015).
D. V. Martynov, E. D. Hall et al., Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy, Phys. Rev. D 93, 112004 (2016).
B. P. Abbott et al. (LIGO Scientific Collaboration), arXiv:1602.03845.
J. Veitch, V. Raymond, B. Farr, W. Farr, P. Graff, S. Vitale, B. Aylott, K. Blackburn, N. Christensen, M. Coughlin et al., Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALinference Software Library, Phys. Rev. D 91, 042003 (2015).
L. K. Nuttall et al., Improving the Data Quality of Advanced LIGO Based on Early Engineering Run Results, Classical Quantum Gravity 32, 245005 (2015).
A. Effler, R.M. S. Schofield, V. V. Frolov, G. Gonzalez, K. Kawabe, J. R. Smith, J. Birch, and R. McCarthy, Environmental Influences on the LIGO Gravitational Wave Detectors During the 6th Science Run, Classical Quantum Gravity 32, 035017 (2015).
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO's First Observing Run (unpublished).
L. A. Wainstein and V. D. Zubakov, Extraction of Signals from Noise (Prentice-Hall, Englewood Cliffs, NJ, 1962).
K. S. Thorne, Gravitational Radiation, in Three Hundred Years of Gravitation, edited by S.W. Hawking and W. Israel (Cambridge University Press, Cambridge, England, 1987), Chap. 9, pp. 330-458.
B. S. Sathyaprakash and S. V. Dhurandhar, Choice of Filters for the Detection of Gravitational Waves from Coalescing Binaries, Phys. Rev. D 44, 3819 (1991).
C. Cutler et al., The Last Three Minutes: Issues in Gravitational Wave Measurements of Coalescing Compact Binaries, Phys. Rev. Lett. 70, 2984 (1993).
L. S. Finn, Detection, Measurement and Gravitational Radiation, Phys. Rev. D 46, 5236 (1992).
L. S. Finn and D. F. Chernoff, Observing Binary Inspiral in Gravitational Radiation: One Interferometer, Phys. Rev. D 47, 2198 (1993).
S. V. Dhurandhar and B. S. Sathyaprakash, Choice of Filters for the Detection of Gravitational Waves from Coalescing Binaries. 2. Detection in Colored Noise, Phys. Rev. D 49, 1707 (1994).
R. Balasubramanian, B. S. Sathyaprakash, and S. V. Dhurandhar, Gravitational Waves from Coalescing Binaries: Detection Strategies and Monte Carlo Estimation of Parameters, Phys. Rev. D 53, 3033 (1996).
E. E. Flanagan and S. A. Hughes, Measuring Gravitational Waves from Binary Black Hole Coalescences: 1. Signal-to-Noise for Inspiral, Merger, and Ringdown, Phys. Rev. D 57, 4535 (1998).
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observing Gravitational-Wave Transient GW150914 with Minimal Assumptions, Phys. Rev. D 93, 122004 (2016).
B. J. Owen, Search Templates for Gravitational Waves from Inspiraling Binaries: Choice of Template Spacing, Phys. Rev. D 53, 6749 (1996).
B. J. Owen and B. S. Sathyaprakash, Matched Filtering of Gravitational Waves from Inspiraling Compact Binaries: Computational Cost and Template Placement, Phys. Rev. D 60, 022002 (1999).
S. Babak, R. Balasubramanian, D. Churches, T. Cokelaer, and B. S. Sathyaprakash, A Template Bank to Search for Gravitational Waves from Inspiralling Compact Binaries. I: Physical Models, Classical Quantum Gravity 23, 5477 (2006).
T. Cokelaer, Gravitational Waves from Inspiralling Compact Binaries: Hexagonal Template Placement and Its Efficiency in Detecting Physical Signals, Phys. Rev. D 76, 102004 (2007).
L. E. Kidder, C.M. Will, and A. G. Wiseman, Spin Effects in the Inspiral of Coalescing Compact Binaries, Phys. Rev. D 47, R4183 (1993).
L. E. Kidder, Coalescing Binary Systems of Compact Objects to Post-Newtonian 5=2 Order. 5. Spin Effects, Phys. Rev. D 52, 821 (1995).
P. C. Peters and J. Mathews, Gravitational Radiation from Point Masses in a Keplerian Orbit, Phys. Rev. 131, 435 (1963).
P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136, B1224 (1964).
L. Blanchet, B. R. Iyer, C.M. Will, and A. G. Wiseman, Gravitational Wave Forms from Inspiralling Compact Binaries to Second Post-Newtonian Order, Classical Quantum Gravity 13, 575 (1996).
T. Damour, Coalescence of Two Spinning Black Holes: An Effective One-Body Approach, Phys. Rev. D 64, 124013 (2001).
E. Racine, Analysis of Spin Precession in Binary Black Hole Systems Including Quadrupole-Monopole Interaction, Phys. Rev. D 78, 044021 (2008).
P. Ajith, M. Hannam, S. Husa, Y. Chen, B. Brügmann, N. Dorband, D. Müller, F. Ohme, D. Pollney, C. Reisswig, L. Santamaría, and J. Seiler, Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins, Phys. Rev. Lett. 106, 241101 (2011).
L. Santamaría, F. Ohme, P. Ajith, B. Brügmann, N. Dorband, M. Hannam, S. Husa, P. Moesta, D. Pollney, C. Reiss-wig, E. L. Robinson, J. Seiler, and B. Krishnan, Matching Post-Newtonian and Numerical Relativity Waveforms: Systematic Errors and a New Phenomenological Model for Non-precessing Black Hole Binaries, Phys. Rev. D 82, 064016 (2010).
A. B. Nielsen, Compact Binary Coalescence Parameter Estimations for 2.5 Post-Newtonian Aligned Spinning Waveforms, Classical Quantum Gravity 30, 075023 (2013).
F. Ohme, A. B. Nielsen, D. Keppel, and A. Lundgren, Statistical and Systematic Errors for Gravitational-Wave Inspiral Signals: A Principal Component Analysis, Phys. Rev. D 88, 042002 (2013).
J. Antoniadis, P. C. C. Freire, N. Wex, T. M. Tauris, R. S. Lynch et al., A Massive Pulsar in a Compact Relativistic Binary, Science 340, 1233232 (2013).
K. Belczynski, A. Buonanno, M. Cantiello, C. L. Fryer, D. E. Holz, I. Mandel, M. C. Miller, and M. Walczak, The Formation and Gravitational-Wave Detection of Massive Stellar Black-Hole Binaries, Astrophys. J. 789, 120 (2014).
C. E. Rhoades, Jr. and R. Ruffini, Maximum Mass of a Neutron Star, Phys. Rev. Lett. 32, 324 (1974).
V. Kalogera and G. Baym, The Maximum Mass of a Neutron Star, Astrophys. J. 470, L61 (1996).
F. Ozel, D. Psaltis, R. Narayan, and J. E. McClintock, The Black Hole Mass Distribution in the Galaxy, Astrophys. J. 725, 1918 (2010).
W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel, and V. Kalogera, The Mass Distribution of Stellar-Mass Black Holes, Astrophys. J. 741, 103 (2011).
L. Kreidberg, C. D. Bailyn, W. M. Farr, and V. Kalogera, Mass Measurements of Black Holes in X-Ray Transients: Is There a Mass Gap?, Astrophys. J. 757, 36 (2012).
J. Casares and P. G. Jonker, Mass Measurements of Stellar and Intermediate Mass Black-Holes, Space Sci. Rev. 183, 223 (2014).
J. M. Corral-Santana, J. Casares, T. Munoz-Darias, F. E. Bauer, I. G. Martinez-Pais, and D. M. Russell, BlackCAT: A Catalogue of Stellar-Mass Black Holes in X-ray Transients, Astron. Astrophys. 587, A61 (2016).
B. E. Tetarenko, G. R. Sivakoff, C. O. Heinke, and J. C. Gladstone, WATCHDOG: A Comprehensive All-Sky Database of Galactic Black Hole X-ray Binaries, Astrophys. J. Suppl. Ser. 222, 15 (2016).
L. S. Finn and D. F. Chernoff, Observing Binary Inspiral in Gravitational Radiation: One Interferometer, Phys. Rev. D 47, 2198 (1993).
E. Poisson and C. M. Will, Gravitational Waves from Inspiraling Compact Binaries: Parameter Estimation Using Second PostNewtonian Wave Forms, Phys. Rev. D 52, 848 (1995).
E. Berti, V. Cardoso, and C. M. Will, Gravitational-Wave Spectroscopy of Massive Black Holes with the Space Interferometer LISA, Phys. Rev. D 73, 064030 (2006).
J. Veitch, M. Prrer, and I. Mandel, Measuring Intermediate Mass Black Hole Binaries with Advanced Gravitational Wave Detectors, Phys. Rev. Lett. 115, 141101 (2015).
P. B. Graff, A. Buonanno, and B. S. Sathyaprakash, Missing Link: Bayesian Detection and Measurement of Intermediate-Mass Black-Hole Binaries, Phys. Rev. D 92, 022002 (2015).
C.-J. Haster, Z. Wang, C. P. L. Berry, S. Stevenson, J. Veitch, and I. Mandel, Inference on Gravitational Waves from Coalescences of Stellar-Mass Compact Objects and Intermediate-Mass Black Holes, Mon. Not. R. Astron. Soc. 457, 4499 (2016).
C. Cutler and E. Flanagan, Gravitational Waves from Merging Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Waveform?, Phys. Rev. D 49, 2658 (1994).
E. Baird, S. Fairhurst, M. Hannam, and P. Murphy, Degeneracy Between Mass and Spin in Black-Hole-Binary Waveforms, Phys. Rev. D 87, 024035 (2013).
A. Vecchio, LISA Observations of Rapidly Spinning Massive Black Hole Binary Systems, Phys. Rev. D 70, 042001 (2004).
S. Vitale, R. Lynch, J. Veitch, V. Raymond, and R. Sturani, Measuring the Spin of Black Holes in Binary Systems Using Gravitational Waves, Phys. Rev. Lett. 112, 251101 (2014).
K. Chatziioannou, N. Cornish, A. Klein, and N. Yunes, Spin-Precession: Breaking the Black Hole-Neutron Star Degeneracy, Astrophys. J. 798, L17 (2015).
D. Gerosa, M. Kesden, U. Sperhake, E. Berti, and R. O'Shaughnessy, Multi-timescale Analysis of Phase Transitions in Precessing Black-Hole Binaries, Phys. Rev. D 92, 064016 (2015).
J. Healy, C. O. Lousto, and Y. Zlochower, Remnant Mass, Spin, and Recoil from Spin Aligned Black-Hole Binaries, Phys. Rev. D 90, 104004 (2014).
J. G. Baker, W. D. Boggs, J. Centrella, B. J. Kelly, S. T. McWilliams, and J. R. van Meter, Mergers of Nonspinning Black-Hole Binaries: Gravitational Radiation Characteristics, Phys. Rev. D 78, 044046 (2008).
C. Reisswig, S. Husa, L. Rezzolla, E. N. Dorband, D. Pollney, and J. Seiler, Gravitational-Wave Detectability of Equal-Mass Black-Hole Binaries with Aligned Spins, Phys. Rev. D 80, 124026 (2009).
X. J. Forteza et al., Technical Report No. LIGO-T1600018 (LIGO Project, 2016), https://dcc.ligo.org/LIGOT1600018/ public/main.
W. Israel, Event Horizons in Static Vacuum Space-times, Phys. Rev. 164, 1776 (1967).
W. Israel, Event Horizons in Static Electrovac Space-times, Commun. Math. Phys. 8, 245 (1968).
B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett. 26, 331 (1971).
D. C. Robinson, Uniqueness of the Kerr Black Hole, Phys. Rev. Lett. 34, 905 (1975).
G.W. Gibbons, Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes, Commun. Math. Phys. 44, 245 (1975).
R. D. Blandford and R. L. Znajek, Electromagnetic Extractions of Energy from Kerr Black Holes, Mon. Not. R. Astron. Soc. 179, 433 (1977).
R. S. Hanni, Limits on the Charge of a Collapsed Object, Phys. Rev. D 25, 2509 (1982).
T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne, Spin Induced Orbital Precession and Its Modulation of the Gravitational Wave Forms from Merging Binaries, Phys. Rev. D 49, 6274 (1994).
P. Schmidt, F. Ohme, and M. Hannam, Towards Models of Gravitational Waveforms from Generic Binaries II: Modelling Precession Effects with a Single Effective Precession Parameter, Phys. Rev. D 91, 024043 (2015).
J. A. Gonzalez, U. Sperhake, B. Brügmann, M. Hannam, and S. Husa, Total Recoil: The Maximum Kick from Nonspinning Black-Hole Binary Inspiral, Phys. Rev. Lett. 98, 091101 (2007).
E. Berti, V. Cardoso, J. A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, and B. Brügmann, Inspiral, Merger and Ringdown of Unequal Mass Black Hole Binaries: A Multipolar Analysis, Phys. Rev. D 76, 064034 (2007).
N. K. Johnson-McDaniel et al., Technical Report No. LIGO-T1600168 (LIGO Project, 2016), https://dcc .ligo.org/LIGO-T1600168/public/main.
S. Nissanke, D. E. Holz, S. A. Hughes, N. Dalal, and J. L. Sievers, Exploring Short Gamma-Ray Bursts as Gravitational-Wave Standard Sirens, Astrophys. J. 725, 496 (2010).
B. Farr et al., Parameter Estimation on Gravitational Waves from Neutron-Star Binaries with Spinning Components, Astrophys. J. 825, 116 (2015).
M. V. van der Sluys, C. Roever, A. Stroeer, N. Christensen, V. Kalogera, R. Meyer, and A. Vecchio, Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries, Astrophys. J. 688, L61 (2008).
S. Fairhurst, Triangulation of Gravitational Wave Sources with a Network of Detectors, New J. Phys. 11, 123006 (2009).
K. Grover, S. Fairhurst, B. F. Farr, I. Mandel, C. Rodriguez, T. Sidery, and A. Vecchio, Comparison of Gravitational Wave Detector Network Sky Localization Approximations, Phys. Rev. D 89, 042004 (2014).
L. P. Singer and L. R. Price, Rapid Bayesian Position Reconstruction for Gravitational-Wave Transients, Phys. Rev. D 93, 024013 (2016).
M. M. Kasliwal and S. Nissanke, On Discovering Electromagnetic Emission from Neutron Star Mergers: The Early Years of Two Gravitational Wave Detectors, Astrophys. J. 789, L5 (2014).
L. P. Singer, L. R. Price, B. Farr, A. L. Urban, C. Pankow et al., The First Two Years of Electromagnetic Follow-Up with Advanced LIGO and Virgo, Astrophys. J. 795, 105 (2014).
R. Essick, S. Vitale, E. Katsavounidis, G. Vedovato, and S. Klimenko, Localization of Short Duration Gravitational-Wave Transients with the Early Advanced LIGO and Virgo Detectors, Astrophys. J. 800, 81 (2015).
C. P. L. Berry et al., Parameter Estimation for Binary Neutron-Star Coalescences with Realistic Noise During the Advanced LIGO Era, Astrophys. J. 804, 114 (2015).
B. F. Schutz, Networks of Gravitational Wave Detectors and Three Figures of Merit, Classical Quantum Gravity 28, 125023 (2011).
J. Veitch, I. Mandel, B. Aylott, B. Farr, V. Raymond, C. Rodriguez, M. van der Sluys, V. Kalogera, and A. Vecchio, Estimating Parameters of Coalescing Compact Binaries with Proposed Advanced Detector Networks, Phys. Rev. D 85, 104045 (2012).
C. L. Rodriguez, B. Farr, V. Raymond, W. M. Farr, T. B. Littenberg, D. Fazi, and V. Kalogera, Basic Parameter Estimation of Binary Neutron Star Systems by the Advanced LIGO/Virgo Network, Astrophys. J. 784, 119 (2014).
B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo, Living Rev. Relativ. 19, 1 (2016).
R. L. Forward, Wideband Laser-Interferometer Gravitational-Radiation Experiment, Phys. Rev. D 17, 379 (1978).
S. Fairhurst, Source Localization with an Advanced Gravitational Wave Detector Network, Classical Quantum Gravity 28, 105021 (2011).
A. Ghosh et al., Testing General Relativity Using Golden Black-Hole Binaries, Phys. Rev. D 94, 021101 (2016).
L. Blanchet and B. S. Sathyaprakash, Detecting a Tail Effect in Gravitational-Wave Experiments, Phys. Rev. Lett. 74, 1067 (1995).
K. G. Arun, B. R. Iyer, M. S. S. Qusailah, and B. S. Sathyaprakash, Probing the Non-linear Structure of General Relativity with Black Hole Binaries, Phys. Rev. D 74, 024006 (2006).
C. K. Mishra, K. G. Arun, B. R. Iyer, and B. S. Sathyaprakash, Parametrized Tests of Post-Newtonian Theory Using Advanced LIGO and Einstein Telescope, Phys. Rev. D 82, 064010 (2010).
N. Yunes and F. Pretorius, Fundamental Theoretical Bias in Gravitational Wave Astrophysics and the Parametrized Post-Einsteinian Framework, Phys. Rev. D 80, 122003 (2009).
T. G. F. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani, and A. Vecchio, Towards a Generic Test of the Strong Field Dynamics of General Relativity Using Compact Binary Coalescence, Phys. Rev. D 85, 082003 (2012).
M. Agathos,W. Del Pozzo, T. G. F. Li, C. Van Den Broeck, J. Veitch, and S. Vitale, TIGER: A Data Analysis Pipeline for Testing the Strong-Field Dynamics of General Relativity with Gravitational Wave Signals from Coalescing Compact Binaries, Phys. Rev. D 89, 082001 (2014).
L. Sampson, N. Cornish, and N. Yunes, Gravitational Wave Tests of Strong Field General Relativity with Binary Inspirals: Realistic Injections and Optimal Model Selection, Phys. Rev. D 87, 102001 (2013).
T. G. F. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani, and A. Vecchio, Towards a Generic Test of the Strong Field Dynamics of General Relativity Using Compact Binary Coalescence, Phys. Rev. D 85, 082003 (2012).
T. G. F. Li, W. Del Pozzo, S. Vitale, C. Van Den Broeck, M. Agathos, J. Veitch, K. Grover, T. Sidery, R. Sturani, and A. Vecchio, Towards a Generic Test of the Strong Field Dynamics of General Relativity Using Compact Binary Coalescence: Further Investigations, J. Phys. Conf. Ser. 363, 012028 (2012).
N. Yunes, K. Yagi, and F. Pretorius, Theoretical Physics Implications of the Binary Black-Hole Merger GW150914, arXiv:1603.08955 [Phys. Rev. D (to be published)].
L. Blanchet and T. Damour, Hereditary Effects in Gravitational Radiation, Phys. Rev. D 46, 4304 (1992).
E. Poisson, Gravitational Radiation from a Particle in Circular Orbit Around a Black Hole. 1: Analytical Results for the Nonrotating Case, Phys. Rev. D 47, 1497 (1993).
L. Blanchet and G. Schaefer, Gravitational Wave Tails and Binary Star Systems, Classical Quantum Gravity 10, 2699 (1993).
A. G. Wiseman, Coalescing Binary Systems of Compact Objects to (Post)5/2-Newtonian Order. IV. The Gravitational Wave Tail, Phys. Rev. D 48, 4757 (1993).
J. Lense and H. Thirring, über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie, Phys. Z. 19, 156 (1918) [, On the Gravitational Effects of Rotating Masses: The Thirring-Lense Papers, Gen. Relativ. Gravit. 16, 711 (1984)].
B. M. Barker and R. F. O'Connell, Gravitational Two-Body Problem with Arbitrary Masses, Spins, and Quadrupole Moments, Phys. Rev. D 12, 329 (1975).
C. M. Will, The Confrontation Between General Relativity and Experiment, Living Rev. Relativ. 17, 4 (2014).
B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams et al., Supplement: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914, arXiv:1606.03939.
W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel, and V. Kalogera, The Mass Distribution of Stellar-Mass Black Holes, Astrophys. J. 741, 103 (2011).
J. Bovy, D.W. Hogg, and S. T. Roweis, Extreme Deconvolution: Inferring Complete Distribution Functions from Noisy, Heterogeneous and Incomplete Observations, Ann. Appl. Stat. 5, 1657 (2011).
I. Mandel, Parameter Estimation on Gravitational Waves from Multiple Coalescing Binaries, Phys. Rev. D 81, 084029 (2010).
D.W. Hogg, A. D. Myers, and J. Bovy, Inferring the Eccentricity Distribution, Astrophys. J. 725, 2166 (2010).
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Astrophysical Implications of the Binary Black-Hole Merger GW150914, Astrophys. J. Lett. 818, L22 (2016).
S. Sigurdsson and L. Hernquist, Primordial Black Holes in Globular Clusters, Nature (London) 364, 423 (1993).
S. F. Portegies Zwart and S. L.W. McMillan, Black Hole Mergers in the Universe, Astrophys. J. 528, L17 (2000).
M. C. Miller and V. M. Lauburg, Mergers of Stellar-Mass Black Holes in Nuclear Star Clusters, Astrophys. J. 692, 917 (2009).
B. M. Ziosi, M. Mapelli, M. Branchesi, and G. Tormen, Dynamics of Stellar Black Holes in Young Star Clusters with Different Metallicities-II. Black Hole-Black Hole Binaries, Mon. Not. R. Astron. Soc. 441, 3703 (2014).
C. L. Rodriguez, M. Morscher, B. Pattabiraman, S. Chatterjee, C.-J. Haster, and F. A. Rasio, Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO, Phys. Rev. Lett. 115, 051101 (2015).
B. McKernan, K. E. S. Ford, W. Lyra, and H. B. Perets, Intermediate Mass Black Holes in AGN Discs-I. Production and Growth, Mon. Not. R. Astron. Soc. 425, 460 (2012).
J. M. Bellovary, M.-M. Mac Low, B. McKernan, and K. E. S. Ford, Migration Traps in Disks around Supermassive Black Holes, Astrophys. J. Lett. 819, L17 (2016).
A. Tutukov and L. Yungelson, Evolution of Massive Close Binaries, Nauchnye Informatsii 27, 70 (1973).
A. V. Tutukov and L. R. Yungelson, The Merger Rate of Neutron Star and Black Hole Binaries, Mon. Not. R. Astron. Soc. 260, 675 (1993).
V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Formation and Coalescence of Relativistic Binary Stars: The Effect of Kick Velocity, Mon. Not. R. Astron. Soc. 288, 245 (1997).
R. Voss and T. M. Tauris, Galactic Distribution of Merging Neutron Stars and Black Holes-Prospects for Short Gamma-Ray Burst Progenitors and LIGO/Virgo, Mon. Not. R. Astron. Soc. 342, 1169 (2003).
G. Nelemans, Galactic Binaries as Sources of Gravitational Waves, in Astrophysics of Gravitational Wave Sources, American Institute of Physics Conference Series, edited by J. M. Centrella (AIP, Melville, NY, 2003), Vol. 686, pp. 263-272.
K. Belczynski, M. Dominik, T. Bulik, R. O'Shaughnessy, C. Fryer, and D. E. Holz, The Effect of Metallicity on the Detection Prospects for Gravitational Waves, Astrophys. J. Lett. 715, L138 (2010).
K. Belczynski, T. Bulik, and B. Rudak, The First Stellar Binary Black Holes: The Strongest Gravitational Wave Burst Sources, Astrophys. J. Lett. 608, L45 (2004).
T. Kinugawa, K. Inayoshi, K. Hotokezaka, D. Nakauchi, and T. Nakamura, Possible Indirect Confirmation of the Existence of Pop III Massive Stars by Gravitational Wave, Mon. Not. R. Astron. Soc. 442, 2963 (2014).
I. Mandel and S. E. de Mink, Merging Binary Black Holes Formed through Chemically Homogeneous Evolution in Short-Period Stellar Binaries, Mon. Not. R. Astron. Soc. 458, 2634 (2016).
P. Marchant, N. Langer, P. Podsiadlowski, T. M. Tauris, and T. J. Moriya, A New Route Towards Merging Massive Black Holes, Astron. Astrophys. 588, A50 (2016).
K. Belczynski, D. E. Holz, T. Bulik, and R. O'Shaughnessy, The First Gravitational-Wave Source from the Isolated Evolution of Two 40-100 Msun Stars, Nature (London) 534, 512 (2016).
J. J. Eldridge and E. R. Stanway, BPASS Predictions for Binary Black-Hole Mergers, Mon. Not. R. Astron. Soc. 462, 3302 (2016).
V. M. Lipunov, V. Kornilov, E. Gorbovskoy, N. Tiurina, P. Balanutsa, and A. Kuznetsov, The First Gravitational-Wave Burst GW150914. Part I. Scenario Machine Prediction, New Astron. 51, 122 (2016).
S. E. de Mink and I. Mandel, The Chemically Homogeneous Evolutionary Channel for Binary Black Hole Mergers: Rates and Properties of Gravitational-Wave Events Detectable by Advanced LIGO, Mon. Not. R. Astron. Soc. 460, 3545 (2016).
K. Inayoshi, K. Kashiyama, E. Visbal, and Z. Haiman, Strong Gravitational Wave Background from Population III Binary Black Holes Consistent with Cosmic Reionization, Mon. Not. R. Astron. Soc. 461, 2722 (2016).
C. L. Rodriguez, C.-J. Haster, S. Chatterjee, V. Kalogera, and F. A. Rasio, Dynamical Formation of the GW150914 Binary Black Hole, Astrophys. J. Lett. 824, L8 (2016).
M. Mapelli, Massive Black Hole Binaries from Runaway Collisions: The Impact of Metallicity, Mon. Not. R. Astron. Soc. 459, 3432 (2016).
I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, Rapid and Bright Stellar-Mass Binary Black Hole Mergers in Active Galactic Nuclei, arXiv:1602.03831.
N. C. Stone, B. D. Metzger, and Z. Haiman, Assisted Inspirals of Stellar Mass Black Holes Embedded in AGN Disks, Mon. Not. R. Astron. Soc., doi: 10.1093/ mnras/stw2260 (2015).
M. Spera, M. Mapelli, and A. Bressan, The Mass Spectrum of Compact Remnants from the PARSEC Stellar Evolution Tracks, Mon. Not. R. Astron. Soc. 451, 4086 (2015).
M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O'Shaughnessy, Double Compact Objects. II. Cosmological Merger Rates, Astrophys. J. 779, 72 (2013).
M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O'Shaughnessy, Double Compact Objects. I. The Significance of the Common Envelope on Merger Rates, Astrophys. J. 759, 52 (2012).
B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari et al., GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes, Phys. Rev. Lett. 116, 131102 (2016).
W. M. Farr, B. Farr, and T. Littenberg, Technical Report No. LIGO-T1400682 (LIGO Project, 2015).
R. F. Webbink, Double White Dwarfs as Progenitors of R Coronae Borealis Stars and Type I Supernovae, Astrophys. J. 277, 355 (1984).
I. Iben, Jr. and A. V. Tutukov, Supernovae of Type I as End Products of the Evolution of Binaries with Components of Moderate Initial Mass (M Not Greater Than About 9 Solar Masses), Astrophys. J. Suppl. Ser. 54, 335 (1984).
M. de Kool, E. P. J. van den Heuvel, and E. Pylyser, An Evolutionary Scenario for the Black Hole Binary A0620-00, Astron. Astrophys. 183, 47 (1987).
M. Dominik, E. Berti, R. O'Shaughnessy, I. Mandel, K. Belczynski, C. Fryer, D. E. Holz, T. Bulik, and F. Pannarale, Double Compact Objects III: Gravitationalwave Detection Rates, Astrophys. J. 806, 263 (2015).
R. O'Shaughnessy, V. Kalogera, and K. Belczynski, Mapping Inspiral Rates on Population Synthesis Parameters, Astrophys. J. 620, 385 (2005).
N. Ivanova, S. Justham, X. Chen, O. De Marco, C. L. Fryer, E. Gaburov, H. Ge, E. Glebbeek, Z. Han, X.-D. Li et al., Common Envelope Evolution: Where We Stand and How We Can Move Forward, Astron. Astrophys. Rev. 21, 59 (2013).
S. T. Ohlmann, F. K. Röpke, R. Pakmor, and V. Springel, Hydrodynamic Moving-Mesh Simulations of the Common Envelope Phase in Binary Stellar Systems, Astrophys. J. Lett. 816, L9 (2016).
I. Mandel, C.-J. Haster, M. Dominik, and K. Belczynski, Distinguishing Types of Compact-Object Binaries Using the Gravitational-Wave Signatures of Their Mergers, Mon. Not. R. Astron. Soc. 450, L85 (2015).
T. Bulik and K. Belczynski, Constraints on the Binary Evolution from Chirp Mass Measurements, Astrophys. J. Lett. 589, L37 (2003).
I. Mandel and R. O'Shaughnessy, Compact Binary Coalescences in the Band of Ground-Based Gravitational-Wave Detectors, Classical Quantum Gravity 27, 114007 (2010).
S. Vitale, R. Lynch, P. Graff, and R. Sturani, Use of Gravitational Waves to Measure Alignment of Spins in Compact Binaries, arXiv:1503.04307.
S. Stevenson, F. Ohme, and S. Fairhurst, Distinguishing Compact Binary Population Synthesis Models Using Gravitational Wave Observations of Coalescing Binary Black Holes, Astrophys. J. 810, 58 (2015).
A. Sesana, The Promise of Multi-band Gravitational Wave Astronomy, Phys. Rev. Lett. 116, 231102 (2016).
A. Nishizawa, E. Berti, A. Klein, and A. Sesana, eLISA Eccentricity Measurements as Tracers of Binary Black Hole Formation, Phys. Rev. D 94, 064020 (2016).
S. Vitale, Multi-band Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space and Ground-Based Detectors, Phys. Rev. Lett. 117, 051102 (2016).
K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C. Searle, and A. J.Weinstein, Singular Value Decomposition Applied to Compact Binary Coalescence Gravitational-Wave Signals, Phys. Rev. D 82, 044025 (2010).
"Gstreamer Plugins for the LSC Algorithm Library", https://www.lsc-group.phys.uwm.edu/daswg/projects/ gstlal.html.
K. C. Cannon, A Bayesian Coincidence Test for Noise Rejection in a Gravitational-Wave Burst Search, Classical Quantum Gravity 25, 105024 (2008).
K. Cannon, C. Hanna, and D. Keppel, Method to Estimate the Significance of Coincident Gravitational-Wave Observations from Compact Binary Coalescence, Phys. Rev. D 88, 024025 (2013).
The LALInference package of the LAL software suite is available from https://wiki.ligo.org/DASWG/LALSuite.
J. Aasi et al. (LIGO Collaboration andVirgo Collaboration), Parameter Estimation for Compact Binary Coalescence Signals with the First Generation Gravitational-Wave Detector Network, Phys. Rev. D 88, 062001 (2013).
J. Veitch and A. Vecchio, Bayesian Coherent Analysis of In-spiral Gravitational Wave Signals with a Detector Network, Phys. Rev. D 81, 062003 (2010).
T. Bayes and R. Price, An Essay Towards Solving a Problem in the Doctrine of Chances, Phil. Trans. R. Soc. London 53, 370 (1763).
E. T. Jaynes, Probability Theory: The Logic of Science, edited by G. L. Bretthorst (Cambridge University Press, Cambridge, England, 2003).
Y. Pan, A. Buonanno, A. Taracchini, L. E. Kidder, A. H. Mroué, H. P. Pfeiffer, M. A. Scheel, and B. Szilgyi, Inspiral-Merger-Ringdown Waveforms of Spinning, Precessing Black-Hole Binaries in the Effective-One-Body Formalism, Phys. Rev. D 89, 084006 (2014).
H. Jeffreys, Theory of Probability, 3rd ed., Oxford Classic Texts in the Physical Sciences (Clarendon Press, Oxford, 1961).
D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. van der Linde, Bayesian Measures of Model Complexity and Fit, J. Roy. Stat. Soc., Ser. B 64, 583 (2002).
A. van der Linde, DIC in Variable Selection, Stat. Neer. 59, 45 (2005).
A. Gelman, J. Hwang, and A. Vehtari, Understanding Predictive Information Criteria for Bayesian Models, arXiv:1307.5928.
E. E. Flanagan and S. A. Hughes, Measuring Gravitational Waves from Binary Black Hole Coalescences: 2. The Waves' Information and Its Extraction, with and without Templates, Phys. Rev. D 57, 4566 (1998).
C. Cutler and M. Vallisneri, LISA Detections of Massive Black Hole Inspirals: Parameter Extraction Errors Due to Inaccurate Template Waveforms, Phys. Rev. D 76, 104018 (2007).
J. Aasi et al. (LIGO Collaboration andVirgo Collaboration), Parameter Estimation for Compact Binary Coalescence Signals with the First Generation Gravitational-Wave Detector Network, Phys. Rev. D 88, 062001 (2013).
B. P. Abbott, R. Abbott, T. D. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Directly Comparing GW150914 with Numerical Solutions of Einstein's Equations for Binary Black Hole Coalescence, Phys. Rev. D 94, 064035 (2016).
C. J. Moore, C. P. L. Berry, A. J. K. Chua, and J. R. Gair, Improving Gravitational-Wave Parameter Estimation Using Gaussian Process Regression, Phys. Rev. D 93, 064001 (2016).
W. M. Farr, J. R. Gair, I. Mandel, and C. Cutler, Counting and Confusion: Bayesian Rate Estimation with Multiple Populations, Phys. Rev. D 91, 023005 (2015).
D.W. Hogg, Distance Measures in Cosmology, arXiv: astro-ph/9905116.
I. Mandel, W. M. Farr, and J. Gair, Technical Report No. P1600187, https://dcc.ligo.org/LIGO-P1600187/ public.
T. J. Loredo, Accounting for Source Uncertainties in Analyses of Astronomical Survey Data, in American Institute of Physics Conference Series, edited by R. Fischer, R. Preuss, and U. V. Toussaint (AIP, New York, 2004), Vol. 735, pp. 195-206.