[en] We describe a directed search for continuous gravitational waves in data from the sixth initial LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of ≈2.7 kpc. The search covered a broad band of frequencies along with first and second frequency derivatives for a fixed sky position. The search coherently integrated data from the two LIGO interferometers over a time span of 9.2 days using the matched-filtering F-statistic. We found no gravitational-wave signals and set 95 confidence upper limits as stringent as 6.0\?x10-25 on intrinsic strain and 8.5\?x10-6 on fiducial ellipticity. These values beat the indirect limits from energy conservation for stars with characteristic spin-down ages older than 300 years and are within the range of theoretical predictions for possible neutron-star ellipticities. An important feature of this search was use of a barycentric resampling algorithm which substantially reduced computational cost; this method is used extensively in searches of Advanced LIGO and Virgo detector data.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Abbott, B. P.
Collette, Christophe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Active aerospace struct. and adv. mecha. systems
P. Astone, K. M. Borkowski, P. Jaranowski, M. Pietka, and A. Królak, Phys. Rev. D 82, 022005 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.022005
P. Patel, X. Siemens, R. Dupuis, and J. Betzwieser, Phys. Rev. D 81, 084032 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.81.084032
P. Patel, Ph.D. thesis, California Institute of Technology, 2010.
Z.-X. Wang, D. Chakrabarty, and D. L. Kaplan, Nature (London) 440, 772 (2006). NATUAS 0028-0836 10.1038/nature04669
A. Wolszczan and D. A. Frail, Nature (London) 355, 145 (1992). NATUAS 0028-0836 10.1038/355145a0
S. E. Thorsett, Z. Arzoumanian, and J. H. Taylor, Astrophys. J. Lett. 412, L33 (1993). AJLEEY 2041-8213 10.1086/186933
S. Sigurdsson, H. B. Richer, B. M. Hansen, I. H. Stairs, and S. E. Thorsett, Science 301, 193 (2003). SCIEAS 0036-8075 10.1126/science.1086326
S. Sigurdsson, Astrophys. J. Lett. 399, L95 (1992). AJLEEY 2041-8213 10.1086/186615
M. Vigelius and A. Melatos, Mon. Not. R. Astron. Soc. 395, 1985 (2009). MNRAA4 0035-8711 10.1111/j.1365-2966.2009.14698.x
B. Haskell, M. Priymak, A. Patruno, M. Oppenoorth, A. Melatos, and P. D. Lasky, Mon. Not. R. Astron. Soc. 450, 2393 (2015). MNRAA4 0035-8711 10.1093/mnras/stv726
F. Verbunt and P. Hut, in The Origin and Evolution of Neutron Stars, edited by D. J. Helfand and J.-H. Huang (IAU Symposium, 1987), Vol. 125, p. 187.
W. E. Harris, Astron. J. 112, 1487 (1996). ANJOAA 0004-6256 10.1086/118116
W. E. Harris, arXiv:1012.3224.
K. Wette, Phys. Rev. D 85, 042003 (2012). PRVDAQ 1550-7998 10.1103/PhysRevD.85.042003
D. M. Whitbeck, Ph.D. thesis, The Pennsylvania State University, 2006.
R. Prix, Phys. Rev. D 75, 023004 (2007). PRVDAQ 1550-7998 10.1103/PhysRevD.75.023004
B. J. Owen, Phys. Rev. D 53, 6749 (1996). PRVDAQ 0556-2821 10.1103/PhysRevD.53.6749
P. R. Brady, T. Creighton, C. Cutler, and B. F. Schutz, Phys. Rev. D 57, 2101 (1998). PRVDAQ 0556-2821 10.1103/PhysRevD.57.2101
D. Heggie and P. Hut, The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics (Cambridge University Press, Cambridge, 2003).
D. Keitel, R. Prix, M. A. Papa, P. Leaci, and M. Siddiqi, Phys. Rev. D 89, 064023 (2014). PRVDAQ 1550-7998 10.1103/PhysRevD.89.064023
K. Wette, Ph.D. thesis, Australian National University, 2009.
P. Saulson, Fundamentals of Interferometric Gravitational-Wave Detectors (World Scientific Publishing Company, Incorporated, Singapore, 1994).
B. J. Owen, Phys. Rev. D 82, 104002 (2010). PRVDAQ 1550-7998 10.1103/PhysRevD.82.104002
B. J. Owen, Phys. Rev. Lett. 95, 211101 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.211101
N. K. Johnson-McDaniel and B. J. Owen, Phys. Rev. D 88, 044004 (2013). PRVDAQ 1550-7998 10.1103/PhysRevD.88.044004
B. P. Abbott, Living Rev. Relativ. 19 (2016). 1433-8351 10.1007/lrr-2016-1