[en] Recovering microalgae is one of the main technological and economic concerns in a high-rate algal pond (HRAP) because of their small size and their low density. This paper emphasizes the characterization (identification and assessment of potential flocculation) of chemical compounds involved in microalgae auto-flocculation in a HRAP. First, thermodynamic simulations were performed, using two models (i.e. Visual Minteq and a simplified thermodynamic model) in order to determinethechemicalcompoundsofinterest.Experimentaltestswerethencarriedoutwiththesecompoundsforassessing their flocculation ability. Both models revealed that precipitates of calcium phosphates and their substituted forms were the compounds involved in the auto-flocculation. Moreover, experimental tests showed that the stoichiometric neutralization of algal charges by calcium phosphates (i.e. hydroxyapatite (Ca5(PO4)3OH), octacalcium phosphate (Ca4H(PO4)3) and amorphous calcium phosphate (Ca3(PO4)2)), at a pH within the range 7–10 yields 70–82% recovered algal biomass. The optimumratiorequiredforalgaeauto-flocculationwas0.33Ca5(PO4)3OH/gDMalgae atpH10,0.11Ca4H(PO4)3/gDMalgae at pH 7 and 0.23g Ca3(PO4)2/g DMalgae at pH 9. Auto-flocculation appears as a simple, sustainable and promising method for efficient harvesting of microalgae in a HRAP.
Disciplines :
Environmental sciences & ecology
Author, co-author :
Baya, Dehenould Trésor
Effebi, K. R.
Tangou, T. T.
Keffela, C.
Vasel, Jean-Luc ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > DER Sc. et gest. de l'environnement (Arlon Campus Environ.)
Language :
English
Title :
Effect of hydroxyapatite, octacalcium phosphate and calcium phosphate on the auto-flocculation of the microalgae in a high rate algal pond (HRAP)
Gutzeit G, Lorch D,Weber A, Engels M, Neis U. Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Sci Technol. 2005;52:9-18
Gutzeit G, Neis U. Symbiotische algen-bakterien-biomasse, entwicklung eines neuen abwasserreinigungsverfahrens für länder mit hoher sonneneinstrahlung. Korrespondenz Abwasser. 2007;54:698-703
Lavoie A, De la Noüe J. Récupération de microalgues en eaux usées: Études comparative de divers agents floculants. Can J Civ Eng. 1984;11:266-272
Borowitzka MA. Microalgae as source of chemicals. Microbial Sci. 1986;3:372-375
El Halouani H. Lagunage à haut rendement: Caractérisation physico-chimique de l'ecosystème. Etude de son aptitude à l'élimination de l'azote et du phosphate dans l'epuration des eaux usées [PhD dissertation]. Montpellier (France): Université de Montpellier I; 1990
Pulz O. Photobioreactor: Production système for phototrophic microorganism. Appl Microbiol Biotechnol. 2001;57:287-293
Banerjee A, Sharma R, Chisti Y, Banerjee UC. Botryococcus braunii, renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol. 2002;22:245-279
Gestion DS. Récupération et valorisation de la biomasse produite dans une fillière d'épuration des eaux usées par chenal algal à haut rendement [PhD dissertation]. Liege (France): Université de Liège; 2008
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sust Energ Rev. 2010;14:217-232
Dela Noüe J, de Pauw N. The potential of microalgal biotechnology: A review of production and uses of microalgae. Biotechnol Adv. 1988;29:725-770
Poelman E, Paw ND, Jeurissen B. Potential of electrolytic floculation for recovery of microalgae. Resour Conserv Recy. 1996;19:1-10
Grima EM, Belardi EH, Fernandez FGA, Medina R. Recovery of microalgal biomass and metabolites options and economic. Biotechnol Adv. 2002;20:491-515
Sukenik A, Shelef G. Algal autoflocculation-verification and proposed mechanism. Biotechnol Bioeng. 1984;26:142-147
Vandamme D, Pontes SCV, Goiris K, Foubert I, Pinoy LJJ, Muylaert K. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng. 2011;108:2320-2329
Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour Technol. 2011;102:71-81
Wu Z, Zhu Y, Huang W, Zhang C, Li T, Zhang Y, Li A. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol. 2012;110:496-502
Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H. Harvesting of microalgae by flocculation with poly (γ -glutamic acid). Bioresour Technol. 2012;112:212-220
Frappart M, Massé A, Jaffrin MY, Pruvost J, Jaouen P. Influence of hydrodynamics in tangential and dynamic ultrafiltration systems for microalgae separation. Desalination. 2011;265:279-283
Ahmad AL, Yasin Mat NH, Derek CJC, Lim JK. Optimization of microalgae coagulation process using chitosan. Chem Eng J. 2011;173:879-882
Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686-702
Xu L, Guo C, Wang F, Zheng S, Liu C-Z. A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol. 2011;102:10047-10051
Rossignol N, Vandanjon L, Jaouen P, Quéméneur F. Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross-flow microfiltration and ultrafiltration. Aquacult Eng. 1999;20:191-208
Bilanovic D, Shelef G, Sukenik A. Flocculation of microalgae with cationic polymers-effects of medium salinity. Biomass. 1988;17:65-76
Sukenik A, Bilanovic D, Shelef G. Flocculation of microalgae in brackish and sea waters. Biomass. 1988;15:187-199
Cosa S, Mabinya LV, Olaniran AO, Okoh AI. Production and characterization of bioflocculant produced by Halobacillus sp. Mvuyo isolated from bottom sediment of Algoa Bay. Environ Technol. 2011;33:967-973
Phoochinda W, White DA, Briscoe BJ. An algal removal using a combination of flocculation and flotation processes. Environ Technol. 2004;24:1385-1395
Phoochinda W, White DA. Removal of algae using froth flotation. Environ Technol. 2003;25:87-96
Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:294-306
Salim S, Bosma R, Vermuë MH, Wijffels RH. Harvesting of microalgae by bio-flocculation. J Appl Phycol. 2010;23:849-855
Baya DT. Etude de l'autofloculation dans un chenal algal à haut rendement (CAHR) [PhD dissertation]. Liege (France): Unversité de Liège; 2012
Lavoie A, De La Noüe J. Harvesting of Scenedesmus obliquus in wastewaters: Auto-or biofloculation? Biotechnol Bioeng. 1987;30:852-859
Picot B, El Halouani H, Cassellas C, Moersidik S, Bontoux J. Nutrient removal by high rate pond system in Mediterranean climate (France). Water Sci Technol. 1991;23: 1535-1541
Moutin T, Gal JY, El Halouani H, Picot B, Bontoux J. Decrease of phosphate concentration in a high rate pond by precipitation of calcium phosphate: Theoretical and experimental results. Water Res. 1992;26:1445-1450
Gustafsson JP. Visual Minteq (VMinteq) Version 3.0. Stockholm: KTH. Department of Land and Water Resources Engineering; 2011
Appelo CAJ, Postma D. Geochemistry, groundwater and pollution. Rotterdam: Balkema; 1993
Davies CW. Ion association.Washington DC: Butterworths; 1962
Vandamme D, Foubert I, Meesschaert B, Muylaert K. Flocculation of microalgae using cationic starch. J Appl Phycol. 2010;22:525-530
Chiu YC, Kuo CY, Wang CW. Using electrophoresis to determine zeta potential of micelles and critical micelle concentration. J Dispersion Sci Technol. 2000;21: 327-343
Henderson RK, Parsons SA, Jefferson B. Successful removal of algae through the control of zeta potential. Sep Sci Technol. 2008;43:1653-1666
Aktas TS, Takeda F, Maruo C, Chiba N, Nishimura O. A comparison of zeta potentials and coagulation behaviors of cyanobacteria and algae. DesalinWater Treat. 2012;48:294-301
Kam S-K, Gregory J. Charge determination of synthetic cationic polyelectrolytes by colloid titration. Colloids Surf A. 1999;159:165-179
Zawacki SJ, Heughebaert JC, Nancollas GH. The growth of nonstoichiometric apatite from aqueous solution at 37°C: II. Effects of pH upon the precipated phase. J Colloid Interface Sci. 1990;135:33-44
Heughebaert JC, Zawacki SJ, Nancollas GH. The growth of nonstoichiometric apatite from aqueous solution at 37°C: I. Methology and growth at pH 7.4. J Colloid Interface Sci. 1990;135:20-32
Heubeck S, Craggs RJ, Shilton A. Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci Technol. 2007;55:193-200
Masadome T, Hoshi Y. Determination of anionic polyelectrolytes using a photometric titration with crystal violet as a color indicator. Microchim Acta. 2003;142:37-41