Lu, Jinjing ; Université de Liège - ULiège > TERRA Research Centre
Liang, G.; Department of Biology, Utah State University, Logan, UT, United States
Wu, X.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Zhang, Mengni ; Université de Liège - ULiège > TERRA Research Centre
Plougonven, Erwan ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Wang, Y.; Institute of Water Saving Agriculture in Arid Regions of China (IWSA), Northwest A & F University, Yangling, China
Gao, L.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Abdelrhman, A. A.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Song, X.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Liu, X.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Degré, Aurore ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Language :
English
Title :
Factors governing soil water repellency under tillage management: The role of pore structure and hydrophobic substances
Publication date :
2021
Journal title :
Land Degradation and Development
ISSN :
1085-3278
eISSN :
1099-145X
Publisher :
John Wiley and Sons Ltd
Volume :
32
Issue :
2
Pages :
1046-1059
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
National Key Research and Development Program of China. Grant Number: 2018YFE0112300; National Key Research Development Program of China. Grant Number: 2018YFD0200408 National Science and Technology Project of China. Grant Number: 2015BAD22B03
Funders :
National Key Research and Development Program of China, NKRDPC: 2018YFD0200408, 2018YFE0112300; National Science and Technology Planning Project; Wuhan Science and Technology Project: 2015BAD22B03
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Allen, M. F. (2007). Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone Journal, 6, 291–297. https://doi.org/10.2136/vzj2006.0068
Arns, C. H., Knackstedt, M. A., & Martys, N. S. (2005). Cross-property correlations and permeability estimation in sandstone. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 72, 1–12. https://doi.org/10.1103/PhysRevE.72.046304
Atanassova, I., & Doerr, S. H. (2011). Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62, 516–532. https://doi.org/10.1111/j.1365-2389.2011.01350.x
Beckers, E., Plougonven, E., Roisin, C., Hapca, S., Léonard, A., & Degré, A. (2014). X-ray microtomography: A porosity-based thresholding method to improve soil pore network characterization? Geoderma, 220, 145–154. https://doi.org/10.1016/j.geoderma.2014.01.004
Behrends, F., Hallett, P. D., Morrás, H., Garibaldi, L., Cosentino, D., Duval, M., & Galantini, J. (2019). Soil stabilisation by water repellency under no-till management for soils with contrasting mineralogy and carbon quality. Geoderma, 355, 113902. https://doi.org/10.1016/j.geoderma.2019.113902
Blanco-Canqui, H. (2011). Does no-till farming induce water repellency to soils? Soil Use and Management, 27, 2–9. https://doi.org/10.1111/j.1475-2743.2010.00318.x
Blanco-Canqui, H., & Lal, R. (2009). Extent of soil water repellency under long-term no-till soils. Geoderma, 149, 171–180. https://doi.org/10.1016/j.geoderma.2008.11.036
Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326, 164–200. https://doi.org/10.1016/j.geoderma.2018.03.011
Borges, J. A. R., Pires, L. F., Cássaro, F. A. M., Auler, A. C., Rosa, J. A., Heck, R. J., & Roque, W. L. (2019). X-ray computed tomography for assessing the effect of tillage systems on topsoil morphological attributes. Soil & Tillage Research, 189, 25–35. https://doi.org/10.1016/j.still.2018.12.019
Carrillo, M. L. K., Yates, S. R., & Letey, J. (1999). Measurement of initial soil-water contact angle of water repellent soils. Soil Science Society of America Journal, 63, 433–436. https://doi.org/10.2136/sssaj1999.03615995006300030002x
Cosentino, D., Hallett, P. D., Michel, J. C., & Chenu, C. (2010). Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue? Geoderma, 159, 221–227. https://doi.org/10.1016/j.geoderma.2010.07.015
Czachor, H., Doerr, S. H., & Lichner, L. (2010). Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations. Journal of Hydrology, 380, 104–111. https://doi.org/10.1016/j.jhydrol.2009.10.027
Daniel, N. R. R., Uddin, S. M. M., Harper, R. J., & Henry, D. J. (2019). Soil water repellency: A molecular-level perspective of a global environmental phenomenon. Geoderma, 338, 56–66. https://doi.org/10.1016/j.geoderma.2018.11.039
Debano, L. F. (2000). The role of fire and soil heating on water repellency in wildland environments: A review. Journal of Hydrology, 231–232, 195–206. https://doi.org/10.1016/S0022-1694(00)00194-3
Dekker, L. W., Ritsema, C. J., & Oostindie, K. (2000). Extent and significance of water repellency in dunes along the Dutch coast. Journal of Hydrology, 231, 112–125. https://doi.org/10.1016/s0022-1694(00)00188-8.
Doerr, S. H., Shakesby, R. A., & Walsh, R. P. D. (2000). Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51, 33–65. https://doi.org/10.1016/S0012-8252(00)00011-8
Doube, M., Klosowski, M. M., Arganda-Carreras, I., Cordelières, F. P., Dougherty, R. P., Jackson, J. S., … Shefelbine, S. J. (2010). BoneJ: Free and extensible bone image analysis in ImageJ. Bone, 47, 1076–1079. https://doi.org/10.1016/j.bone.2010.08.023
Fang, H., Zhang, Z., Li, D., Liu, K., Zhang, K., & Zhang, W. (2019). Temporal dynamics of paddy soil structure as affected by different fertilization strategies investigated with soil shrinkage curve. Soil & Tillage Research, 187, 102–109. https://doi.org/10.1016/j.still.2018.12.006
Fischer, T., Veste, M., Wiehe, W., & Lange, P. (2010). Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 47–52. https://doi.org/10.1016/J.CATENA.2009.08.009
Fontaine, S., Mariotti, A., & Abbadie, L. (2003). The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry, 35, 837–843. https://doi.org/10.1016/S0038-0717(03)00123-8
Gao, L., Wang, B., Li, S., Han, Y., Zhang, X., Gong, D., … Degré, A. (2019). Effects of different long-term tillage systems on the composition of organic matter by 13C CP/TOSS NMR in physical fractions in the Loess Plateau of China. Soil and Tillage Research, 194, 104321. https://doi.org/10.1016/j.still.2019.104321
Ghanbarian, B., Torres-Verdín, C., & Skaggs, T. H. (2016). Quantifying tight-gas sandstone permeability via critical path analysis. Advances in Water Resources, 92, 316–322. https://doi.org/10.1016/j.advwatres.2016.04.015
Girona-garcía, A., Ortiz-perpiñá, O., Badía-villas, D., & Martí-dalmau, C. (2018). Effects of prescribed burning on soil organic C, aggregate stability and water repellency in a subalpine shrubland: Variations among sieve fractions and depths. Catena, 166, 68–77. https://doi.org/10.1016/j.catena.2018.03.018
González-Peñaloza, F. A., Cerdà, A., Zavala, L. M., Jordán, A., Giménez-Morera, A., & Arcenegui, V. (2012). Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233–239. https://doi.org/10.1016/j.still.2012.06.015
Gordon, G., Stavi, I., Shavit, U., & Rosenzweig, R. (2018). Oil spill effects on soil hydrophobicity and related properties in a hyper-arid region. Geoderma, 312, 114–120. https://doi.org/10.1016/j.geoderma.2017.10.008
Greco, R., & Gargano, R. (2015). A novel equation for determining the suction stress of unsaturated soils from the water retention curve based on wetted surface area in pores. Water Resources Research, 51, 6143–6155. https://doi.org/10.1002/2014WR016541
Hallett, P. D., Baumgartl, T., & Young, I. M. (2001). Subcritical water repellency of aggregates from a range of soil management practices. Soil Science Society of America Journal, 65, 184–190. https://doi.org/10.2136/sssaj2001.651184x
Hallett, P. D., & Young, I. M. (1999). Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. European Journal of Soil Science, 50(1), 35–40. https://doi.org/10.1046/j.1365-2389.1999.00214.x
Hallin, I., Douglas, P., Doerr, S. H., & Bryant, R. (2013). The role of drop volume and number on soil water repellency determination. Soil Science Society of America Journal, 77, 1732–1743. https://doi.org/10.2136/sssaj2013.04.0130
Han, D., & Zhou, T. (2018). Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment. Journal of Hydrology, 559, 13–29. https://doi.org/10.1016/j.jhydrol.2018.02.012
Hu, Z., Jon, S., & Peng, X. (2017). Bimodal soil pore structure investigated by a combined soil water retention curve and X-Ray computed tomography approach. Soil Science Society of America Journal, 81(6), 1270–1278. https://doi.org/10.2136/sssaj2016.10.0338
Hunter, A. E., Chau, H. W., & Si, B. C. (2011). Impact of tension infiltrometer disc size on measured soil water repellency index. Canadian Journal of Soil Science, 91, 77–81. https://doi.org/10.4141/CJSS10033
Jarvis, N., Larsbo, M., & Koestel, J. (2017). Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography. Geoderma, 287, 71–79. https://doi.org/10.1016/j.geoderma.2016.06.026
Jimenez-Morillo, N. T., Gonzalez-Perez, J. A., Jordan, A., Zavala, L. M., de la Rosa, J., Jimenez-Gonzalez, M. A., & Gonzalez-Vila, F. J. (2016). Organic matter fractions controlling soil water repellency in sandy soils from the Donana National Park (Southwestern Spain). Land Degradation & Development, 27, 1413–1423. https://doi.org/10.1002/ldr.2314
Katuwal, S., Norgaard, T., Moldrup, P., Lamandé, M., Wildenschild, D., & de Jonge, L. W. (2015). Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma, 237–238, 9–20. https://doi.org/10.1016/j.geoderma.2014.08.006
Koestel, J. (2018). SoilJ: An imagej plugin for the semiautomatic processing of three-dimensional X-ray images of soils. Vadose Zone Journal, 17, 1–7. https://doi.org/10.2136/vzj2017.03.0062
Koestel, J., Dathe, A., Skaggs, T. H., & Klakegg, O. (2018). Estimating the permeability of naturally structured soil from percolation theory and pore space characteristics imaged by X-ray. Water Resources Research, 54(11), 9255–9263. https://doi.org/10.1029/2018WR023609
Koestel, J., & Schlüter, S. (2019). Quantification of the structure evolution in a garden soil over the course of two years. Geoderma, 338, 597–609. https://doi.org/10.1016/j.geoderma.2018.12.030
Leeds-Harrison, P. B., Youngs, E. G., & Uddin, B. (1994). A device for determining the sorptivity of soil aggregates. European Journal of Soil Science, 45, 269–272. https://doi.org/10.1111/j.1365-2389.1994.tb00509.x
Leelamanie, D. A. L., & Karube, J. (2013). Soil-water contact angle as affected by the aqueous electrolyte concentration. Soil Science and Plant Nutrition, 59, 501–508. https://doi.org/10.1080/00380768.2013.809601
Li, Y., Yao, N., Tang, D., Chau, H. W., & Feng, H. (2019). Soil water repellency decreases summer maize growth. Agricultural and Forest Meteorology, 266–267, 1–11. https://doi.org/10.1016/j.agrformet.2018.12.001
Liu, Z., Ma, D., Hu, W., & Li, X. (2018). Land use dependent variation of soil water infiltration characteristics and their scale-specific controls. Soil and Tillage Research, 178, 139–149. https://doi.org/10.1016/j.still.2018.01.001
Lu, S., Yu, X., & Zong, Y. (2019). Nano-microscale porosity and pore size distribution in aggregates of paddy soil as affected by long-term mineral and organic fertilization under rice-wheat cropping system. Soil & Tillage Research, 186, 191–199. https://doi.org/10.1016/j.still.2018.10.008
Lucas-Borja, M. E., Zema, D. A., Antonio Plaza-álvarez, P., Zupanc, V., Baartman, J., Sagra, J., … de las Heras, J. (2019). Effects of different land uses (abandoned farmland, intensive agriculture and forest) on soil hydrological properties in Southern Spain. Water, 11, 1–14. https://doi.org/10.3390/w11030503
Madsen, M. D., Zvirzdin, D. L., Petersen, S. L., Hopkins, B. G., Roundy, B. A., & Chandler, D. G. (2011). Soil water repellency within a burned piñon–juniper woodland: spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 75, 1543–1553. https://doi.org/10.2136/sssaj2010.0320
Martínez-garcía, L. B., Korthals, G., Brussaard, L., Bracht, H., & De, D. G. B. (2018). Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties. Agriculture, Ecosystems and Environment, 263, 7–17. https://doi.org/10.1016/j.agee.2018.04.018
Mataix-Solera, J., Arcenegui, V., Zavala, L. M., Pérez-Bejarano, A., Jordán, A., Morugán-Coronado, A., … Gil-Torres, J. (2014). Controlo por pequenas alterações nas propriedades do solo da repelência de água induzida através do fogo. Spanish Journal of Soil Science, 4, 51–60. https://doi.org/10.3232/SJSS.2014.V4.N1.03
Matamala, R., Calderón, F. J., Jastrow, J. D., Fan, Z., Hofmann, S. M., Michaelson, G. J., … Ping, C. L. (2017). Influence of site and soil properties on the DRIFT spectra of northern cold-region soils. Geoderma, 305, 80–91. https://doi.org/10.1016/j.geoderma.2017.05.014
Miller, J. J., Owen, M. L., Yang, X. M., Drury, C. F., Reynolds, W. D., & Chanasyk, D. S. (2019). Tillage system influences hydrophobicity but not water repellency of a clay loam soil in southwestern Ontario. Canadian Journal of Soil Science, 99, 575–578. https://doi.org/10.1139/cjss-2019-0051
Nokken, M. R., & Hooton, R. D. (2008). Using pore parameters to estimate permeability or conductivity of concrete. Materials and Structures/Materiaux et Constructions, 41, 1–16. https://doi.org/10.1617/s11527-006-9212-y
Nyman, P., Sheridan, G., & Lane, P. N. J. (2010). Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil, South-East Australia. Hydrological Processes, 24, 2871–2887. https://doi.org/10.1002/hyp.7701
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66. https://doi.org/10.1109/tsmc.1979.4310076
Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research, 79, 131–143. https://doi.org/10.1016/j.still.2004.07.002
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems and Environment, 187, 87–105. https://doi.org/10.1016/j.agee.2013.10.010
Parvin, N., Beckers, E., Plougonven, E., Léonard, A., & Degré, A. (2017). Dynamic of soil drying close to saturation: What can we learn from a comparison between X-ray computed microtomography and the evaporation method ? Geoderma, 302, 66–75. https://doi.org/10.1016/j.geoderma.2017.04.027
Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, L. J., Lee, J., Lundy, M. E., … Van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517, 365–368. https://doi.org/10.1038/nature13809
Pituello, C., Dal Ferro, N., Simonetti, G., Berti, A., & Morari, F. (2016). Nano to macro pore structure changes induced by long-term residue management in three different soils. Agriculture, Ecosystems and Environment, 217, 49–58. https://doi.org/10.1016/j.agee.2015.10.029
Plaza-Álvarez, P. A., Lucas-Borja, M. E., Sagra, J., Moya, D., Alfaro-Sánchez, R., González-Romero, J., & De las Heras, J. (2018). Changes in soil water repellency after prescribed burnings in three different Mediterranean forest ecosystems. Science of the Total Environment, 644, 247–255. https://doi.org/10.1016/j.scitotenv.2018.06.364
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H. J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009
Renard, P., & Allard, D. (2013). Connectivity metrics for subsurface flow and transport. Advances in Water Resources, 51, 168–196. https://doi.org/10.1016/j.advwatres.2011.12.001
Ritsema, C. J., Dekker, L. W., Oostindie, K., Moore, D., Leinauer, B., & Logsdon, S. (2008). Soil water repellency and critical soil water content. In Soil science: Step by step field analysis (pp. 97–112). Washington, DC: ASA-CSSA-SSSA.
Roper, M. M., Ward, P. R., Keulen, A. F., & Hill, J. R. (2013). Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil and Tillage Research, 126, 143–150. https://doi.org/10.1016/j.still.2012.09.006
Rye, C. F., & Smettem, K. R. J. (2017). The effect of water repellent soil surface layers on preferential flow and bare soil evaporation. Geoderma, 289, 142–149. https://doi.org/10.1016/j.geoderma.2016.11.032
Sandin, M., Koestel, J., Jarvis, N., & Larsbo, M. (2017). Post-tillage evolution of structural pore space and saturated and near-saturated hydraulic conductivity in a clay loam soil. Soil & Tillage Research, 165, 161–168. https://doi.org/10.1016/j.still.2016.08.004
Schlüter, S., Albrecht, L., Schwärzel, K., & Kreiselmeier, J. (2020). Long-term effects of conventional tillage and no-tillage on saturated and near-saturated hydraulic conductivity—Can their prediction be improved by pore metrics obtained with X-ray CT? Geoderma, 361, 114082. https://doi.org/10.1016/j.geoderma.2019.114082
Schlüter, S., & Vogel, H.-J. (2011). On the reconstruction of structural and functional properties in random heterogeneous media. Advances in Water Resources, 34, 314–325. https://doi.org/10.1016/J.ADVWATRES.2010.12.004
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56. https://doi.org/10.1038/nature10386
Seaton, F. M., Jones, D. L., Creer, S., George, P. B. L., Smart, S. M., Lebron, I., … Robinson, D. A. (2019). Plant and soil communities are associated with the response of soil water repellency to environmental stress. Science of the Total Environment, 687, 929–938. https://doi.org/10.1016/j.scitotenv.2019.06.052
Skaggs, T. H. (2006). Percolation theory for flow in porous media (Lecture Notes in Physics 674). Vadose Zone Journal, 5, 1154. https://doi.org/10.2136/vzj2006.0046br
Smet, S., Beckers, E., Plougonven, E., Léonard, A., & Jarvis, N. (2018). Can the pore scale geometry explain soil sample scale hydrodynamic properties ? Frontiers in Environmental Science, 6, 20. https://doi.org/10.3389/fenvs.2018.00020
Sparling, G. P. (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 30, 195–207. https://doi.org/10.1071/SR9920195
Stavi, I., Barkai, D., Knoll, Y. M., & Zaady, E. (2016). Livestock grazing impact on soil wettability and erosion risk in post-fire agricultural lands. Science of the Total Environment, 573, 1203–1208. https://doi.org/10.1016/j.scitotenv.2016.03.126
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99. https://doi.org/10.1016/J.AGEE.2012.10.001
Tadayonnejad, M., Mosaddeghi, M. R., & Ghorbani, S. (2017). Changing soil hydraulic properties and water repellency in a pomegranate orchard irrigated with saline water by applying polyacrylamide. Agricultural Water Management, 188, 12–20. https://doi.org/10.1016/j.agwat.2017.03.026
Tillman, R. W., Scotter, D. R., Wallis, M. G., & Clothier, B. E. (1989). Water repellency and its measurement by using intrinsic sorptivity. Soil Research, 27, 637–644. https://doi.org/10.1071/SR9890637
Urbanek, E., Hallett, P., Feeney, D., & Horn, R. (2007). Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma, 140, 147–155. https://doi.org/10.1016/J.GEODERMA.2007.04.001
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Wander, M. (2004). Soil organic matter fractions and their relevance to soil function. In Soil organic matter in sustainable agriculture (pp. 67–102). Boca Raton, FL: CRC Press.
Wang, B., Gao, L., Yu, W., Wei, X., Li, J., Li, S., … Wu, X. (2019). Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland. Journal of Arid Land, 11, 241–254. https://doi.org/10.1007/s40333-019-0094-6
Weninger, T., Filipovi, V., Me, M., Clothier, B., & Filipovi, L. (2019). Estimating the extent of fire induced soil water repellency in Mediterranean environment. Geoderma, 338, 187–196. https://doi.org/10.1016/j.geoderma.2018.12.008
Woche, S. K., Goebel, M. O., Kirkham, M. B., Horton, R., Van Der Ploeg, R. R., & Bachmann, J. (2005). Contact angle of soils as affected by depth, texture, and land management. European Journal of Soil Science, 56, 239–251. https://doi.org/10.1111/j.1365-2389.2004.00664.x
Xiong, Y., Furman, A., & Wallach, R. (2012). Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils. Journal of Hydrology, 422–423, 30–42. https://doi.org/10.1016/j.jhydrol.2011.12.010
Young, I. M., Crawford, J. W., & Rappoldt, C. (2001). New methods and models for characterising structural heterogeneity of soil. Soil and Tillage Research, 61, 33–45. https://doi.org/10.1016/S0167-1987(01)00188-X
Zavala, L. M., González, F. A., & Jordán, A. (2009). Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma, 152, 361–374. https://doi.org/10.1016/j.geoderma.2009.07.011
Zhang, B., Yao, S. H., & Hu, F. (2007). Microbial biomass dynamics and soil wettability as affected by the intensity and frequency of wetting and drying during straw decomposition. European Journal of Soil Science, 58, 1482–1492. https://doi.org/10.1111/j.1365-2389.2007.00952.x
Zhang, J., Wang, Y., Liu, J., Liu, Q., & Zhou, Q. (2016). Multivariate and geostatistical analyses of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China. Journal of Soils and Sediments, 16, 634–644. https://doi.org/10.1007/s11368-015-1225-0
Zheng, W., Morris, E. K., Lehmann, A., & Rillig, M. C. (2016). Interplay of soil water repellency, soil aggregation and organic carbon. A meta-analysis. Geoderma, 283, 39–47. https://doi.org/10.1016/j.geoderma.2016.07.025
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.