Lu, Jinjing ; Université de Liège - ULiège > TERRA Research Centre
Liang, G.; Department of Biology, Utah State University, Logan, UT, United States
Wu, X.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Zhang, Mengni ; Université de Liège - ULiège > TERRA Research Centre
Plougonven, Erwan ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Wang, Y.; Institute of Water Saving Agriculture in Arid Regions of China (IWSA), Northwest A & F University, Yangling, China
Gao, L.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Abdelrhman, A. A.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Song, X.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Liu, X.; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
Degré, Aurore ; Université de Liège - ULiège > Département GxABT > Echanges Eau - Sol - Plantes
Language :
English
Title :
Factors governing soil water repellency under tillage management: The role of pore structure and hydrophobic substances
Publication date :
2021
Journal title :
Land Degradation and Development
ISSN :
1085-3278
eISSN :
1099-145X
Publisher :
John Wiley and Sons Ltd
Volume :
32
Issue :
2
Pages :
1046-1059
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
National Key Research and Development Program of China. Grant Number: 2018YFE0112300; National Key Research Development Program of China. Grant Number: 2018YFD0200408 National Science and Technology Project of China. Grant Number: 2015BAD22B03
Funders :
National Key Research and Development Program of China, NKRDPC: 2018YFD0200408, 2018YFE0112300; National Science and Technology Planning Project; Wuhan Science and Technology Project: 2015BAD22B03
Allen, M. F. (2007). Mycorrhizal fungi: Highways for water and nutrients in arid soils. Vadose Zone Journal, 6, 291–297. https://doi.org/10.2136/vzj2006.0068
Arns, C. H., Knackstedt, M. A., & Martys, N. S. (2005). Cross-property correlations and permeability estimation in sandstone. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 72, 1–12. https://doi.org/10.1103/PhysRevE.72.046304
Atanassova, I., & Doerr, S. H. (2011). Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 62, 516–532. https://doi.org/10.1111/j.1365-2389.2011.01350.x
Beckers, E., Plougonven, E., Roisin, C., Hapca, S., Léonard, A., & Degré, A. (2014). X-ray microtomography: A porosity-based thresholding method to improve soil pore network characterization? Geoderma, 220, 145–154. https://doi.org/10.1016/j.geoderma.2014.01.004
Behrends, F., Hallett, P. D., Morrás, H., Garibaldi, L., Cosentino, D., Duval, M., & Galantini, J. (2019). Soil stabilisation by water repellency under no-till management for soils with contrasting mineralogy and carbon quality. Geoderma, 355, 113902. https://doi.org/10.1016/j.geoderma.2019.113902
Blanco-Canqui, H. (2011). Does no-till farming induce water repellency to soils? Soil Use and Management, 27, 2–9. https://doi.org/10.1111/j.1475-2743.2010.00318.x
Blanco-Canqui, H., & Lal, R. (2009). Extent of soil water repellency under long-term no-till soils. Geoderma, 149, 171–180. https://doi.org/10.1016/j.geoderma.2008.11.036
Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326, 164–200. https://doi.org/10.1016/j.geoderma.2018.03.011
Borges, J. A. R., Pires, L. F., Cássaro, F. A. M., Auler, A. C., Rosa, J. A., Heck, R. J., & Roque, W. L. (2019). X-ray computed tomography for assessing the effect of tillage systems on topsoil morphological attributes. Soil & Tillage Research, 189, 25–35. https://doi.org/10.1016/j.still.2018.12.019
Carrillo, M. L. K., Yates, S. R., & Letey, J. (1999). Measurement of initial soil-water contact angle of water repellent soils. Soil Science Society of America Journal, 63, 433–436. https://doi.org/10.2136/sssaj1999.03615995006300030002x
Cosentino, D., Hallett, P. D., Michel, J. C., & Chenu, C. (2010). Do different methods for measuring the hydrophobicity of soil aggregates give the same trends in soil amended with residue? Geoderma, 159, 221–227. https://doi.org/10.1016/j.geoderma.2010.07.015
Czachor, H., Doerr, S. H., & Lichner, L. (2010). Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations. Journal of Hydrology, 380, 104–111. https://doi.org/10.1016/j.jhydrol.2009.10.027
Daniel, N. R. R., Uddin, S. M. M., Harper, R. J., & Henry, D. J. (2019). Soil water repellency: A molecular-level perspective of a global environmental phenomenon. Geoderma, 338, 56–66. https://doi.org/10.1016/j.geoderma.2018.11.039
Debano, L. F. (2000). The role of fire and soil heating on water repellency in wildland environments: A review. Journal of Hydrology, 231–232, 195–206. https://doi.org/10.1016/S0022-1694(00)00194-3
Dekker, L. W., Ritsema, C. J., & Oostindie, K. (2000). Extent and significance of water repellency in dunes along the Dutch coast. Journal of Hydrology, 231, 112–125. https://doi.org/10.1016/s0022-1694(00)00188-8.
Doerr, S. H., Shakesby, R. A., & Walsh, R. P. D. (2000). Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51, 33–65. https://doi.org/10.1016/S0012-8252(00)00011-8
Doube, M., Klosowski, M. M., Arganda-Carreras, I., Cordelières, F. P., Dougherty, R. P., Jackson, J. S., … Shefelbine, S. J. (2010). BoneJ: Free and extensible bone image analysis in ImageJ. Bone, 47, 1076–1079. https://doi.org/10.1016/j.bone.2010.08.023
Fang, H., Zhang, Z., Li, D., Liu, K., Zhang, K., & Zhang, W. (2019). Temporal dynamics of paddy soil structure as affected by different fertilization strategies investigated with soil shrinkage curve. Soil & Tillage Research, 187, 102–109. https://doi.org/10.1016/j.still.2018.12.006
Fischer, T., Veste, M., Wiehe, W., & Lange, P. (2010). Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 47–52. https://doi.org/10.1016/J.CATENA.2009.08.009
Fontaine, S., Mariotti, A., & Abbadie, L. (2003). The priming effect of organic matter: a question of microbial competition? Soil Biology and Biochemistry, 35, 837–843. https://doi.org/10.1016/S0038-0717(03)00123-8
Gao, L., Wang, B., Li, S., Han, Y., Zhang, X., Gong, D., … Degré, A. (2019). Effects of different long-term tillage systems on the composition of organic matter by 13C CP/TOSS NMR in physical fractions in the Loess Plateau of China. Soil and Tillage Research, 194, 104321. https://doi.org/10.1016/j.still.2019.104321
Ghanbarian, B., Torres-Verdín, C., & Skaggs, T. H. (2016). Quantifying tight-gas sandstone permeability via critical path analysis. Advances in Water Resources, 92, 316–322. https://doi.org/10.1016/j.advwatres.2016.04.015
Girona-garcía, A., Ortiz-perpiñá, O., Badía-villas, D., & Martí-dalmau, C. (2018). Effects of prescribed burning on soil organic C, aggregate stability and water repellency in a subalpine shrubland: Variations among sieve fractions and depths. Catena, 166, 68–77. https://doi.org/10.1016/j.catena.2018.03.018
González-Peñaloza, F. A., Cerdà, A., Zavala, L. M., Jordán, A., Giménez-Morera, A., & Arcenegui, V. (2012). Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil and Tillage Research, 124, 233–239. https://doi.org/10.1016/j.still.2012.06.015
Gordon, G., Stavi, I., Shavit, U., & Rosenzweig, R. (2018). Oil spill effects on soil hydrophobicity and related properties in a hyper-arid region. Geoderma, 312, 114–120. https://doi.org/10.1016/j.geoderma.2017.10.008
Greco, R., & Gargano, R. (2015). A novel equation for determining the suction stress of unsaturated soils from the water retention curve based on wetted surface area in pores. Water Resources Research, 51, 6143–6155. https://doi.org/10.1002/2014WR016541
Hallett, P. D., Baumgartl, T., & Young, I. M. (2001). Subcritical water repellency of aggregates from a range of soil management practices. Soil Science Society of America Journal, 65, 184–190. https://doi.org/10.2136/sssaj2001.651184x
Hallett, P. D., & Young, I. M. (1999). Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. European Journal of Soil Science, 50(1), 35–40. https://doi.org/10.1046/j.1365-2389.1999.00214.x
Hallin, I., Douglas, P., Doerr, S. H., & Bryant, R. (2013). The role of drop volume and number on soil water repellency determination. Soil Science Society of America Journal, 77, 1732–1743. https://doi.org/10.2136/sssaj2013.04.0130
Han, D., & Zhou, T. (2018). Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment. Journal of Hydrology, 559, 13–29. https://doi.org/10.1016/j.jhydrol.2018.02.012
Hu, Z., Jon, S., & Peng, X. (2017). Bimodal soil pore structure investigated by a combined soil water retention curve and X-Ray computed tomography approach. Soil Science Society of America Journal, 81(6), 1270–1278. https://doi.org/10.2136/sssaj2016.10.0338
Hunter, A. E., Chau, H. W., & Si, B. C. (2011). Impact of tension infiltrometer disc size on measured soil water repellency index. Canadian Journal of Soil Science, 91, 77–81. https://doi.org/10.4141/CJSS10033
Jarvis, N., Larsbo, M., & Koestel, J. (2017). Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography. Geoderma, 287, 71–79. https://doi.org/10.1016/j.geoderma.2016.06.026
Jimenez-Morillo, N. T., Gonzalez-Perez, J. A., Jordan, A., Zavala, L. M., de la Rosa, J., Jimenez-Gonzalez, M. A., & Gonzalez-Vila, F. J. (2016). Organic matter fractions controlling soil water repellency in sandy soils from the Donana National Park (Southwestern Spain). Land Degradation & Development, 27, 1413–1423. https://doi.org/10.1002/ldr.2314
Katuwal, S., Norgaard, T., Moldrup, P., Lamandé, M., Wildenschild, D., & de Jonge, L. W. (2015). Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma, 237–238, 9–20. https://doi.org/10.1016/j.geoderma.2014.08.006
Koestel, J. (2018). SoilJ: An imagej plugin for the semiautomatic processing of three-dimensional X-ray images of soils. Vadose Zone Journal, 17, 1–7. https://doi.org/10.2136/vzj2017.03.0062
Koestel, J., Dathe, A., Skaggs, T. H., & Klakegg, O. (2018). Estimating the permeability of naturally structured soil from percolation theory and pore space characteristics imaged by X-ray. Water Resources Research, 54(11), 9255–9263. https://doi.org/10.1029/2018WR023609
Koestel, J., & Schlüter, S. (2019). Quantification of the structure evolution in a garden soil over the course of two years. Geoderma, 338, 597–609. https://doi.org/10.1016/j.geoderma.2018.12.030
Leeds-Harrison, P. B., Youngs, E. G., & Uddin, B. (1994). A device for determining the sorptivity of soil aggregates. European Journal of Soil Science, 45, 269–272. https://doi.org/10.1111/j.1365-2389.1994.tb00509.x
Leelamanie, D. A. L., & Karube, J. (2013). Soil-water contact angle as affected by the aqueous electrolyte concentration. Soil Science and Plant Nutrition, 59, 501–508. https://doi.org/10.1080/00380768.2013.809601
Li, Y., Yao, N., Tang, D., Chau, H. W., & Feng, H. (2019). Soil water repellency decreases summer maize growth. Agricultural and Forest Meteorology, 266–267, 1–11. https://doi.org/10.1016/j.agrformet.2018.12.001
Liu, Z., Ma, D., Hu, W., & Li, X. (2018). Land use dependent variation of soil water infiltration characteristics and their scale-specific controls. Soil and Tillage Research, 178, 139–149. https://doi.org/10.1016/j.still.2018.01.001
Lu, S., Yu, X., & Zong, Y. (2019). Nano-microscale porosity and pore size distribution in aggregates of paddy soil as affected by long-term mineral and organic fertilization under rice-wheat cropping system. Soil & Tillage Research, 186, 191–199. https://doi.org/10.1016/j.still.2018.10.008
Lucas-Borja, M. E., Zema, D. A., Antonio Plaza-álvarez, P., Zupanc, V., Baartman, J., Sagra, J., … de las Heras, J. (2019). Effects of different land uses (abandoned farmland, intensive agriculture and forest) on soil hydrological properties in Southern Spain. Water, 11, 1–14. https://doi.org/10.3390/w11030503
Madsen, M. D., Zvirzdin, D. L., Petersen, S. L., Hopkins, B. G., Roundy, B. A., & Chandler, D. G. (2011). Soil water repellency within a burned piñon–juniper woodland: spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 75, 1543–1553. https://doi.org/10.2136/sssaj2010.0320
Martínez-garcía, L. B., Korthals, G., Brussaard, L., Bracht, H., & De, D. G. B. (2018). Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties. Agriculture, Ecosystems and Environment, 263, 7–17. https://doi.org/10.1016/j.agee.2018.04.018
Mataix-Solera, J., Arcenegui, V., Zavala, L. M., Pérez-Bejarano, A., Jordán, A., Morugán-Coronado, A., … Gil-Torres, J. (2014). Controlo por pequenas alterações nas propriedades do solo da repelência de água induzida através do fogo. Spanish Journal of Soil Science, 4, 51–60. https://doi.org/10.3232/SJSS.2014.V4.N1.03
Matamala, R., Calderón, F. J., Jastrow, J. D., Fan, Z., Hofmann, S. M., Michaelson, G. J., … Ping, C. L. (2017). Influence of site and soil properties on the DRIFT spectra of northern cold-region soils. Geoderma, 305, 80–91. https://doi.org/10.1016/j.geoderma.2017.05.014
Miller, J. J., Owen, M. L., Yang, X. M., Drury, C. F., Reynolds, W. D., & Chanasyk, D. S. (2019). Tillage system influences hydrophobicity but not water repellency of a clay loam soil in southwestern Ontario. Canadian Journal of Soil Science, 99, 575–578. https://doi.org/10.1139/cjss-2019-0051
Nokken, M. R., & Hooton, R. D. (2008). Using pore parameters to estimate permeability or conductivity of concrete. Materials and Structures/Materiaux et Constructions, 41, 1–16. https://doi.org/10.1617/s11527-006-9212-y
Nyman, P., Sheridan, G., & Lane, P. N. J. (2010). Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil, South-East Australia. Hydrological Processes, 24, 2871–2887. https://doi.org/10.1002/hyp.7701
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66. https://doi.org/10.1109/tsmc.1979.4310076
Pagliai, M., Vignozzi, N., & Pellegrini, S. (2004). Soil structure and the effect of management practices. Soil and Tillage Research, 79, 131–143. https://doi.org/10.1016/j.still.2004.07.002
Palm, C., Blanco-Canqui, H., DeClerck, F., Gatere, L., & Grace, P. (2014). Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems and Environment, 187, 87–105. https://doi.org/10.1016/j.agee.2013.10.010
Parvin, N., Beckers, E., Plougonven, E., Léonard, A., & Degré, A. (2017). Dynamic of soil drying close to saturation: What can we learn from a comparison between X-ray computed microtomography and the evaporation method ? Geoderma, 302, 66–75. https://doi.org/10.1016/j.geoderma.2017.04.027
Pittelkow, C. M., Liang, X., Linquist, B. A., Van Groenigen, L. J., Lee, J., Lundy, M. E., … Van Kessel, C. (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature, 517, 365–368. https://doi.org/10.1038/nature13809
Pituello, C., Dal Ferro, N., Simonetti, G., Berti, A., & Morari, F. (2016). Nano to macro pore structure changes induced by long-term residue management in three different soils. Agriculture, Ecosystems and Environment, 217, 49–58. https://doi.org/10.1016/j.agee.2015.10.029
Plaza-Álvarez, P. A., Lucas-Borja, M. E., Sagra, J., Moya, D., Alfaro-Sánchez, R., González-Romero, J., & De las Heras, J. (2018). Changes in soil water repellency after prescribed burnings in three different Mediterranean forest ecosystems. Science of the Total Environment, 644, 247–255. https://doi.org/10.1016/j.scitotenv.2018.06.364
Rabot, E., Wiesmeier, M., Schlüter, S., & Vogel, H. J. (2018). Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122–137. https://doi.org/10.1016/j.geoderma.2017.11.009
Renard, P., & Allard, D. (2013). Connectivity metrics for subsurface flow and transport. Advances in Water Resources, 51, 168–196. https://doi.org/10.1016/j.advwatres.2011.12.001
Ritsema, C. J., Dekker, L. W., Oostindie, K., Moore, D., Leinauer, B., & Logsdon, S. (2008). Soil water repellency and critical soil water content. In Soil science: Step by step field analysis (pp. 97–112). Washington, DC: ASA-CSSA-SSSA.
Roper, M. M., Ward, P. R., Keulen, A. F., & Hill, J. R. (2013). Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil and Tillage Research, 126, 143–150. https://doi.org/10.1016/j.still.2012.09.006
Rye, C. F., & Smettem, K. R. J. (2017). The effect of water repellent soil surface layers on preferential flow and bare soil evaporation. Geoderma, 289, 142–149. https://doi.org/10.1016/j.geoderma.2016.11.032
Sandin, M., Koestel, J., Jarvis, N., & Larsbo, M. (2017). Post-tillage evolution of structural pore space and saturated and near-saturated hydraulic conductivity in a clay loam soil. Soil & Tillage Research, 165, 161–168. https://doi.org/10.1016/j.still.2016.08.004
Schlüter, S., Albrecht, L., Schwärzel, K., & Kreiselmeier, J. (2020). Long-term effects of conventional tillage and no-tillage on saturated and near-saturated hydraulic conductivity—Can their prediction be improved by pore metrics obtained with X-ray CT? Geoderma, 361, 114082. https://doi.org/10.1016/j.geoderma.2019.114082
Schlüter, S., & Vogel, H.-J. (2011). On the reconstruction of structural and functional properties in random heterogeneous media. Advances in Water Resources, 34, 314–325. https://doi.org/10.1016/J.ADVWATRES.2010.12.004
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56. https://doi.org/10.1038/nature10386
Seaton, F. M., Jones, D. L., Creer, S., George, P. B. L., Smart, S. M., Lebron, I., … Robinson, D. A. (2019). Plant and soil communities are associated with the response of soil water repellency to environmental stress. Science of the Total Environment, 687, 929–938. https://doi.org/10.1016/j.scitotenv.2019.06.052
Skaggs, T. H. (2006). Percolation theory for flow in porous media (Lecture Notes in Physics 674). Vadose Zone Journal, 5, 1154. https://doi.org/10.2136/vzj2006.0046br
Smet, S., Beckers, E., Plougonven, E., Léonard, A., & Jarvis, N. (2018). Can the pore scale geometry explain soil sample scale hydrodynamic properties ? Frontiers in Environmental Science, 6, 20. https://doi.org/10.3389/fenvs.2018.00020
Sparling, G. P. (1992). Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Australian Journal of Soil Research, 30, 195–207. https://doi.org/10.1071/SR9920195
Stavi, I., Barkai, D., Knoll, Y. M., & Zaady, E. (2016). Livestock grazing impact on soil wettability and erosion risk in post-fire agricultural lands. Science of the Total Environment, 573, 1203–1208. https://doi.org/10.1016/j.scitotenv.2016.03.126
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80–99. https://doi.org/10.1016/J.AGEE.2012.10.001
Tadayonnejad, M., Mosaddeghi, M. R., & Ghorbani, S. (2017). Changing soil hydraulic properties and water repellency in a pomegranate orchard irrigated with saline water by applying polyacrylamide. Agricultural Water Management, 188, 12–20. https://doi.org/10.1016/j.agwat.2017.03.026
Tillman, R. W., Scotter, D. R., Wallis, M. G., & Clothier, B. E. (1989). Water repellency and its measurement by using intrinsic sorptivity. Soil Research, 27, 637–644. https://doi.org/10.1071/SR9890637
Urbanek, E., Hallett, P., Feeney, D., & Horn, R. (2007). Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma, 140, 147–155. https://doi.org/10.1016/J.GEODERMA.2007.04.001
Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6
Wander, M. (2004). Soil organic matter fractions and their relevance to soil function. In Soil organic matter in sustainable agriculture (pp. 67–102). Boca Raton, FL: CRC Press.
Wang, B., Gao, L., Yu, W., Wei, X., Li, J., Li, S., … Wu, X. (2019). Distribution of soil aggregates and organic carbon in deep soil under long-term conservation tillage with residual retention in dryland. Journal of Arid Land, 11, 241–254. https://doi.org/10.1007/s40333-019-0094-6
Weninger, T., Filipovi, V., Me, M., Clothier, B., & Filipovi, L. (2019). Estimating the extent of fire induced soil water repellency in Mediterranean environment. Geoderma, 338, 187–196. https://doi.org/10.1016/j.geoderma.2018.12.008
Woche, S. K., Goebel, M. O., Kirkham, M. B., Horton, R., Van Der Ploeg, R. R., & Bachmann, J. (2005). Contact angle of soils as affected by depth, texture, and land management. European Journal of Soil Science, 56, 239–251. https://doi.org/10.1111/j.1365-2389.2004.00664.x
Xiong, Y., Furman, A., & Wallach, R. (2012). Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils. Journal of Hydrology, 422–423, 30–42. https://doi.org/10.1016/j.jhydrol.2011.12.010
Young, I. M., Crawford, J. W., & Rappoldt, C. (2001). New methods and models for characterising structural heterogeneity of soil. Soil and Tillage Research, 61, 33–45. https://doi.org/10.1016/S0167-1987(01)00188-X
Zavala, L. M., González, F. A., & Jordán, A. (2009). Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma, 152, 361–374. https://doi.org/10.1016/j.geoderma.2009.07.011
Zhang, B., Yao, S. H., & Hu, F. (2007). Microbial biomass dynamics and soil wettability as affected by the intensity and frequency of wetting and drying during straw decomposition. European Journal of Soil Science, 58, 1482–1492. https://doi.org/10.1111/j.1365-2389.2007.00952.x
Zhang, J., Wang, Y., Liu, J., Liu, Q., & Zhou, Q. (2016). Multivariate and geostatistical analyses of the sources and spatial distribution of heavy metals in agricultural soil in Gongzhuling, Northeast China. Journal of Soils and Sediments, 16, 634–644. https://doi.org/10.1007/s11368-015-1225-0
Zheng, W., Morris, E. K., Lehmann, A., & Rillig, M. C. (2016). Interplay of soil water repellency, soil aggregation and organic carbon. A meta-analysis. Geoderma, 283, 39–47. https://doi.org/10.1016/j.geoderma.2016.07.025