Liao, T.W.: Clustering of time series data: a survey. Pattern Recogn. 38(11), 1857–1874 (2005)
Maharaj, E.A.: Cluster of time series. J. Classif. 17(2), 297–314 (2000)
Kumar, M., Patel, N.R., Woo, J.: Clustering seasonality patterns in the presence of errors. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 557–563 (2002)
García-López, M.L., García-Ródenas, R., Gómez-González, A.: K-means algorithms for functional data. Neurocomputing 151, 231–245 (2015)
Baragona, R.: A simulation study on clustering time series with metaheuristic methods. Quad. di Stat. 3, 1–26 (2001)
Fu, T.C., Chung, F.L., Ng, V., Luk, R.: Pattern discovery from stock time series using self-organizing maps. In: Workshop Notes of KDD2001 Workshop on Temporal Data Mining, ACM SIGKDD, 26–29 (2001)
Abraham, C., Cornillon, P.A., Matzner-Løber, E., Molinari, N.: Unsupervised curve clustering using B-splines. Scand. J. Stat. 3(30), 581–595 (2003)
Coffey, N., Hinde, J., Holian, E.: Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data. Comput. Stat. Data Anal. 71(3), 14–29 (2014)
de Boor, C.: A Practical Guide to Splines, Applied Mathematical Sciences Series. Springer, New York (2001)
Hastie, T.J., Tibshirani, R.J., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2009)
Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)
Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)
Arbeitman, M.N., Furlong, E.E.M., Imam, F., Johnson, E., Null, B.H., Baker, B.S., Krasnow, M.A., Scott, M.P., Davis, R.W., White, K.P.: Gene expression during the life cycle of drosophila melanogaster. Science 297(5590), 2270–2275 (2002)
Penrose, L.S.: Distance, size and shape. Ann. Eugenics 17(1), 337–343 (1952)
Chiou, J.M., Li, P.L.: Functional clustering and identifying substructures of longitudinal data. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 69(4), 679–699 (2007)
Febrero-Bande, M., Oviedo de la Fuente, M.: Statistical computing in functional data analysis: the R package fda. usc. J. Stat. Softw. 51(4), 1–28 (2012)
Kaufman, L., Rousseeuw, P.: Clustering by means of medoids. In: Dodge, Y. (ed.) Statistical Data Analysis Based on the L1 Norm and Related Methods, pp. 405–416. North Hol-land/Elsevier, Amsterdam (1987)
Lichman, M.: UCI Machine Learning Repository. University of California, Irvine, School of Information and Computer Sciences, http://archive.ics.uci.edu/m (2013)
Alcook, R.J., Manolopoulos, Y.: Time-series similarity queries employing a feature-based approach. In: Proceedings of the 7-th Hellenic Conference on Informatics, University of Ioannina (1999)
Jeong, Y.S., Jeong, M.K., Omitaomu, O.A.: Weighted dynamic time warping for time series classification. Pattern Recogn. 44(9), 2231–2240 (2011)