Carnot battery; Pumped thermal energy storage; Review; Electrical storage
Abstract :
[en] The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case.
Disciplines :
Energy
Author, co-author :
Dumont, Olivier ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Frate, Guido Francesco; University of Pisa > Department of Energy, Systems, Territory and Constructions Engineering
Pillai, Aditya; Ghent University > Faculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems
Lecompte, Steven; Ghent University > aculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems
De Paepe, Michel; Ghent University > aculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems
Lemort, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Language :
English
Title :
Carnot battery technology: a state-of-the-art review
European Commission. Clean Energy for All Europeans. 2016.
U.S. Environmental Protection Agency (EPA). Renewable Energy in the Clean Power Plan. 2015.
Gimeno-Gutiérrez, M., Lacal-Arántegui, R., Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs. Renew. Energy 75 (2015), 856–868, 10.1016/j.renene.2014.10.068.
Hu, X., Feng, F., Liu, K., Zhang, L., Xie, J., Liu, B., State estimation for advanced battery management: key challenges and future trends. Renew. Sustain. Energy Rev., 114, 2019, 109334.
IEA. World Energy Outlook 2018. 2018 Paris.
Hou, Q., Zhang, N., Du, E., Miao, M., Peng, F., Kang, C., Probabilistic duck curve in high PV penetration power system: concept, modeling, and empirical analysis in China. Appl. Energy 242 (2019), 205–215, 10.1016/j.apenergy.2019.03.067.
Obi, M., Bass, R., Trends and challenges of grid-connected photovoltaic systems - a review. Renew. Sustain Energy Rev. 58 (2016), 1082–1094, 10.1016/j.rser.2015.12.289.
Few S., Schmidt O., Offer G.J., Brandon N., Nelson J., Gambhir A. Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: an analysis informed by expert eli.
The Guardian. South Australia's Tesla Battery on Track to Make Back a Third of Cost in a Year. 2018 https://www.theguardian.com/technology/2018/sep/27/south-australias-tesla-battery-on-track-to-make-back-a-third-of-cost-in-a-year (accessed July 20, 2019).
Argyrou, M.C., Christodoulides, P., Kalogirou, S.A., Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications. Renew. Sustain. Energy Rev. 94 (2018), 804–821, 10.1016/j.rser.2018.06.044.
Benato, A., Stoppato, A., Pumped thermal electricity storage: a technology overview. Therm. Sci. Eng. Prog. 6 (2018), 301–315, 10.1016/j.tsep.2018.01.017.
Luo, X., Wang, J., Dooner, M., Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 137 (2015), 511–536, 10.1016/j.apenergy.2014.09.081.
Luo, X., Wang, J., Dooner, M., Clarke, J., Krupke, C., Overview of current development in compressed air energy storage technology. Energy Procedia 62 (2014), 603–611, 10.1016/j.egypro.2014.12.423.
Damak, C., Leducq, D., Hoang, H.M., Negro, D., Delahaye, A., Liquid Air Energy Storage(LAES) as a large-scale storage technology for renewable energy integration - a review of investigation studies and near perspectives of LAES. Int. J. Refrig., 2019, 10.1016/J.IJREFRIG.2019.11.009.
Steinmann, WD., Thermo-mechanical concepts for bulk energy storage. Renew. Sustain. Energy Rev. 75 (2017), 205–219, 10.1016/j.rser.2016.10.065.
Malta, 2019. https://x.company/projects/malta/ consulted on the 14/10/2019.
Smallbone, A., Jülch, V., Wardle, R., Roskilly, A.P., Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies. Energy Convers. Manag. 152 (2017), 221–228, 10.1016/j.enconman.2017.09.047.
Attonaty, K., Stouffs, P., Pouvreau, J., Oriol, J., Deydier, A., Thermodynamic analysis of a 200MWh electricity storage system based on high temperature thermal energy storage. Energy 172 (2019), 1132–1143.
Desrues, T., Ruer, J., Marty, P., Fourmigué, J.F., A thermal energy storage process for large scale electric applications. Appl. Therm. Eng. 30 (2010), 425–432, 10.1016/j.applthermaleng.2009.10.002.
Howes, J., Concept and Development of a Pumped Heat Electricity Storage Device. 2012, IEEE, 10.1109/JPROC.2011.2174529 0018-9219.
White, A., Parks, G., Markides, C.N., Thermodynamic analysis of pumped thermal electricity storage. Appl. Therm. Eng. 53 (2013), 291–298, 10.1016/j.applthermaleng.2012.03.030.
Guo, J., Cai, L., Chen, J., Zhou, Y., Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system. Energy 113 (2016), 693–701, 10.1016/j.energy.2016.07.080.
Farres-Antunez, P., Xue, H., White, AJ., Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle. J. Energy Storage 18:August (2018), 90–102, 10.1016/j.est.2018.04.016 citations. Energy Policy 2018;114:578–9010.1016/j.enpol.2017.12.033.
Benato, A., Stoppato, A., Heat transfer fluid and material selection for an innovative pumped thermal electricity storage system. Energy 147 (2018), 155–168, 10.1016/j.energy.2018.01.045.
Ni, F., Caram, HS., Analysis of pumped heat electricity storage process using exponential matrix solutions. Appl. Therm. Eng. 84 (2015), 34–44, 10.1016/j.applthermaleng.2015.02.046.
White, A., McTigue, J., Markides, C., Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage. Appl. Energy 130 (2014), 648–657, 10.1016/j.apenergy.2014.02.071.
Morandin, M., Maréchal, F., Mercangöz, M., Buchter, F., Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case. Energy 45 (2012), 375–385, 10.1016/j.energy.2012.03.031 a.
Kim, Y.M., Shin, D.G., Lee, S.Y., Favrat, D., Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage. Energy 49 (2013), 484–501, 10.1016/j.energy.2012.09.057.
Mercangöz, M., Hemrle, J., Kaufmann, L., Z'Graggen, A., Ohler, C., Electrothermal energy storage with transcritical CO2 cycles. Energy 45 (2012), 407–415, 10.1016/j.energy.2012.03.013.
Steinmann, WD., The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy 69 (2014), 543–552, 10.1016/j.energy.2014.03.049.
Frate G, F., Antonelli, M., Desideri, U., Pumped thermal electricity storage: an interesting technology for power-to-heat applications. 30th Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst. ECOS 2017, International Measurement Confederation, 2017, 1–12.
Frate, G.F., Antonelli, M., Desideri, U., A novel pumped thermal electricity storage (PTES) system with thermal integration. Appl. Therm. Eng. 121 (2017), 1051–1058, 10.1016/j.applthermaleng.2017.04.127.
Henchoz, S., Buchter, F., Favrat, D., Morandin, M., Mercangöz, M., Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles. Energy 45 (2012), 358–365, 10.1016/j.energy.2012.02.010.
Jockenhöfer, H., Steinmann, W.D., Bauer, D., Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy 145 (2018), 665–676, 10.1016/j.energy.2017.12.087.
Peterson, RB., A concept for storing utility-scale electrical energy in the form of latent heat. Energy 36 (2011), 6098–6109, 10.1016/j.energy.2011.08.003.
Roskosch, D., Atakan, B., Pumped heat electricity storage: potential analysis and orc requirements. Energy Procedia 129 (2017), 1026–1033, 10.1016/j.egypro.2017.09.235.
Staub, S., Bazan, P., Braimakis, K., Müller, D., Regensburger, C., Scharrer, D., et al. Reversible heat pump-organic rankine cycle systems for the storage of renewable electricity. Energies, 2018, 11, 10.3390/en11061352.
Dumont, O., Lemort, V., Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery. Energy, 2020 in press.
Pillai A., Kaya A., De Paepe M., Lecompte S., Performance analysis of an organic rankine cycle for integration in a carnot battery. 5th International Seminar on ORC Power Systems.
AES, 2019. https://www.activeenergysystems.com/, consulted on the 03/06/2019.
Dumont, O., Lemort, V., Thermo-technical approach to characterise the performance of a reversible heat pump/organic Rankine cycle power system depending on its operational conditions. Proceedings of the ECOS 2019 – The 32st International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems, 2019.
Olivier, G., 2006. Système et Procédé de Gestion d’énergie d'un Véhicule. French patent FR29132117.
Peris, B., Dumont, O., Quoilin, S., Navarro-Esbría, J., Internal combustion engines cooling water valorisation through invertible HTHP/ORC systems. Symposium Waste Heat Valorisation in Industrial Processes, Kortrijk, Belgium, 2016.
Schimpf, S., Uitz, K., Span, R., Simulation of a solar assisted combined heat pump-organic Rankine cycle system. Proceedings of World renewable Energy Congress, 2011, Sweden, 2011.
Dumont, O., Carmo, C., Fontaine, V., Randaxhe, F., Quoilin, S., Lemort, V., Elmegaard, B., Nielsen, M.P., Performance of a reversible heat pump / organic Rankine cycle unit coupled with a passive house to get a Positive Energy Building. J. Build. Perform. Simul., 2016, 11–2018.
Dumont, O., Investigation of a Heat Pump Reversible into an Organic Rankine Cycle and its Application in the Building Sector., 2017.
Dumont, O., Quoilin, S., Lemort, V., Experimental investigation of a reversible heat pump/organic Rankine cycle unit designed to be coupled with a passive house to get a Net Zero Energy Building. Int. J. Refrig. 54 (2015), 190–203, 10.1016/j.ijrefrig.2015.03.008.
Caraino, D.I., Nader, W., Breque, F., Nemer, M., Assesing fuel consumption reduction of revercycle: a reversible mobile air conditioning/organic Rankine cycle system. Proceeding of ORC conference, 2019.
Dumont, O., Lemort, V., First Experimental Results of a Thermally Integrated Carnot Battery Using a Reversible Heat Pump / Organic Rankine Cycle. 2nd international workshop on Carnot batteries, 2020 http://hdl.handle.net/2268/250924.
Siemens, 2019. https://www.siemensgamesa.com/products-and-services/hybrid-and-storage/thermal-energy-storage-with-etes consulted on the 15/09/2017. Consulted on the 09/09/2019.
Okazaki, T., Yasuyuki, Y., Taketsune, N., Concept study of wind power utilising direct thermal energy conversion and thermal energy storage. Renew. Energy 83 (2015), 332–338, 10.1016/j.renene.2015.04.027.
Honigmann M.Utilization of exhaust-steam. Specification forming part of Reissued Patent No. 10,675, dated 22 December 1885. Original No. 287,937, dated 6 November 1883. Application for reissue filed 6 October 1884, Serial No. 144,891. United States Patent Office.
Jahnke, A., Strenge, L., Fleßner, V., Wolf, N., Jungnickel, T., Ziegler, F., First cycle simulations of the Honigmann process with LiBr/H2O and NaOH/H2O as working fluid pairs as a thermochemical energy storage. Int. J. Low-Carbon Technol. 8 (2013), i55–i61.
Steinmann, W., The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy, 2014, 543–552.
Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria investigation of a Pumped Thermal Electricity Storage (PTES) system with thermal integration and sensible heat storage, Energy Convers. Manag. 208, doi: 10.1016/j.enconman.2020.112530.
McTigue, J.D., White, A.J., Markides, C.N., Parametric studies and optimisation of pumped thermal electricity storage. Appl. Energy 137 (2015), 800–811, 10.1016/j.apenergy.2014.08.039.
Kotas, T.J., Basic exergy concepts. The Exergy Method of Thermal Plant Analysis, 1985, Elsevier, 29–56, 10.1016/B978-0-408-01350-5.50009-X.
Sarbu, I.a., A comprehensive review of thermal energy storage. Sustainability, 2018, 191.
Hasnain, S., Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy Convers. Manag., 1998, 1127–1138.
Furbo, S., Using water for heat storage in thermal energy storage (TES) systems. Furbo, S., (eds.) Advances in Thermal Energy Storage Systems, 2015, Elsevier, 31–47.
Gallo, A.B., Simões-Moreira, J.R., Energy storage in the energy transition context: a technology review. Renew. Sustain. Energy Rev., 2016, 800–822.
Kalaiselvam, S., Parameshwaran, R., Thermal energy storage technologies for sustainability systems design. Assess. Appl., 2014.
Wang, L., Lin, X., Chai, L., Peng, L., Yu, D., Liu, J., et al. Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based Pumped Thermal Electricity Storage. Energy Convers. Manag. 185 (2019), 593–602, 10.1016/j.enconman.2019.02.022.
Mehling, H., Cabeza, LF., Heat and Cold Storage with PCM. 2008, Springer, Berlin.
Shao, L.R., Figure-of-merit for phase-change materials used in thermal management. Int. J. Heat Mass Transf., 2016, 764–771.
Gurrum, S.J., Thermal management of high temperature pulsed electronics using metallic phase change materials. Numer. Heat Transf. Part A, 2002, 777–790.
Ge, H.a., Keeping smartphones cool with gallium phase change material. J. Heat Transf., 2013, 054503.
Pal, D.a., Application of phase change materials to thermal control of electronic modules: a computational study. J. Electron. Packag., 1997, 40–50.
Yang, X.T., Evaluation and optimisation of low melting point metal PCM heat sink against ultra-high thermal shock. Appl. Therm. Eng., 2017, 34–41.
Yang, X.T., Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock. Energy Convers. Manag., 2018, 467–476.
Muñoz, G., Solé, A., Barreneche, C., Cabeza, L., Corrosion of metal containers for use in PCM energy storage. Renew, Energy 76 (2015), 465–469, 10.1016/j.renene.2014.11.036.
Li, Y., Cao, H., Wang, S., Jin, Yi, Li, D., Wang, X., Ding, Y., Load Shifting of nuclear power plants using cryogenic energy storage technology. Appl, Energy 113:January (2014), 1710–1716, 10.1016/j.apenergy.2013.08.077.
WG., H., Compact Thermal Energy Storage: Material Development and System Integration. 2015, IEA.
Krane, R.J., A Second Law analysis of the optimum design and operation of thermal energy storage systems. Int. J. Heat Mass Transf. 30 (1987), 43–57.
Lott, M.C., Technology Roadmap: Energy storage. 2014, International Energy Agency, Paris, France.
Morgan, R., Nelmes, S., Gibson, E., Brett, G., Liquid air energy storage - analysis and first results from a pilot scale demonstration plant. Appl. Energy 137:January (2015), 845–853, 10.1016/j.apenergy.2014.07.109.
Antonelli, M., Barsali, S., Desideri, U., Giglioli, R., Paganucci, F., Pasini, G., Liquid air energy storage: potential and challenges of hybrid power plants. Appl. Energy 194:May (2017), 522–529, 10.1016/j.apenergy.2016.11.091.
Tafone, A., Borri, E., Comodi, G., van denBroek, M., Romagnoli, A., Liquid air energy storage performance enhancement by means of organic rankine cycle and absorption chiller. Appl. Energy 228:October (2018), 1810–1821, 10.1016/j.apenergy.2018.06.133.
Lee, I., You, F., Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy. Appl. Energy 242:May (2019), 168–180, 10.1016/j.apenergy.2019.03.087.
Lecompte S., Gusev S., Vanslambrouck B., De Paepe M., Experimental results of a small-scale organic Rankine cycle: steady state identification and application to off-design model validation. Appl. Energy 226, 82–106 10.1016/j.apenergy.2018.05.103.
Peng, S., Fuchs, A., Polymeric phase change composites for thermal energy storage. J. Appl. Polym. Sci., 2004, 1240–1251.
WG., H., Compact Thermal Energy Storage: Material Development and System Integration. 2015, IEA.
IEA. Technology Roadmap, Energy Storage. 2014, OECD/IEA.
BMWi, B., Energiekonzept für eine Umweltschonende, Zuverlässige und Bezahlbare Energieversorgung. 2010, Bundesministerium für Wirtschaft und Technologie (BMWi), Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Berlin.
Commission, E., Energy Roadmap 2050. 2011, European Commission, Brussels.
Fursch, M., Hagspiel, S., Jagemann, C., Nagl, S., Lindenberger, D., Troster, E., The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050. Appl. Energy 104 (2013), 642–652.
Benato, A., Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system. Energy 138 (2017), 419–436, 10.1016/j.energy.2017.07.066.
Georgiou, S.N., A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems. Appl. energy, 2018, 1119–1133.
Frate, G.F., Ferrari, L., Desideri, U., Critical review and economic feasibility analysis of electric energy storage technologies suited for grid scale applications. E3S Web Conf, 137, 2019, 01037, 10.1051/e3sconf/201913701037.