[en] We analyze precipitating electron fluxes connected to 18 crossings of Io's footprint tail aurora, over altitudes of 0.15 to 1.1 Jovian radii (RJ). The strength of precipitating electron fluxes is dominantly organized by “Io-Alfvén tail distance,” the angle along Io's orbit between Io and an Alfvén wave trajectory connected to the tail aurora. These fluxes best fit an exponential as a function of down-tail extent with an e-folding distance of 21°. The acceleration region altitude likely increases down-tail, and the majority of parallel electron acceleration sustaining the tail aurora occurs above 1 RJ in altitude. We do not find a correlation between the tail fluxes and the power of the initial Alfvén wave launched from Io. Finally, Juno has likely transited Io's Main Alfvén Wing fluxtube, observing a characteristically distinct signature with precipitating electron fluxes 600 mW/m2 and an acceleration region extending as low as 0.4 RJ in altitude.
Centre/Unité de recherche :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Aérospatiale, astronomie & astrophysique
Auteur, co-auteur :
Szalay, J. R.
Allegrini, F.
Bagenal, F.
Bolton, S. J.
Bonfond, Bertrand ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliographie
Acuña, M. H., Neubauer, F. M., & Ness, N. F. (1981). Standing Alfvén wave current system at Io: Voyager 1 observations. Journal of Geophysical Research, 86(A10), 8513–8521. https://doi.org/10.1029/JA086ia10p08513
Allegrini, F., Bagenal, F., Bolton, S., Connerney, J., Clark, G., Ebert, R. W., Kim, T. K., Kurth, W. S., Levin, S., Louarn, P., Mauk, B., McComas, D. J., Pollock, C., Ranquist, D., Reno, M., Szalay, J. R., Thomsen, M. F., Valek, P., Weidner, S., Wilson, R. J., & Zink, J. L. (2017). Electron beams and loss cones in the auroral regions of Jupiter. Geophysical Research Letters, 44, 1–9. https://doi.org/10.1002/2017GL073180
Allegrini, F., Mauk, B. H., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., et al. (2020). Energy flux and characteristic energy of electrons over Jupiter's main auroral emission. Journal of Geophysical Research: Space Physics, 125, 1–25. https://doi.org/10.1029/2019JA027693
Bagenal, F. (1983). Alfvén wave propagation in the Io plasma torus. Journal of Geophysical Research, 88(A4), 3013. https://doi.org/10.1029/JA088ia04p03013
Belcher, J. W., Goertz, C. K., Sullivan, J. D., & Acuña, M. H. (1981). Plasma observations of the Alfvén wave generated by Io. Journal of Geophysical Research, 86(A10), 8508–8512. https://doi.org/10.1029/JA086ia10p08508
Bigg, E. K. (1964). Influence of the satellite Io on Jupiter's decametric emission. Nature, 203(4949), 1008–1010. https://doi.org/10.1038/2031008a0
Blöcker, A., Roth, L., Ivchenko, N., & Hue, V. (2020). Variability of Io’s poynting flux: A parameter study using MHD simulations. Planetary and Space Science, 192, 105058. https://doi.org/10.1016/j.pss.2020.105058
Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., Bagenal, F., Gautier, D., Ingersoll, A. P., Orton, G. S., Guillot, T., Hubbard, W., Bloxham, J., Coradini, A., Stephens, S. K., Mokashi, P., Thorne, R., & Thorpe, R. (2017). The Juno mission. Space Science Reviews, 213(1–4), 5–37. https://doi.org/10.1007/s11214-017-0429-6
Bonfond, B., Gladstone, G. R., Grodent, D., Greathouse, T. K., Versteeg, M. H., Hue, V., Davis, M. W., Vogt, M. F., Gérard, J. C., Radioti, A., Bolton, S., Levin, S. M., Connerney, J. E. P., Mauk, B. H., Valek, P., Adriani, A., & Kurth, W. S. (2017). Morphology of the UV aurorae Jupiter during Juno's first perijove observations. Geophysical Research Letters, 44, 4463–4471. https://doi.org/10.1002/2017GL073114
Bonfond, B., Grodent, D., Badman, S. V., Saur, J., Gérard, J.-C., & Radioti, A. (2017). Similarity of the Jovian satellite footprints: Spots multiplicity and dynamics. Icarus, 292, 208–217. https://doi.org/10.1016/j.icarus.2017.01.009
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Dols, V., Delamere, P. A., & Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. Journal of Geophysical Research, 114, A07224. https://doi.org/10.1029/2009JA014312
Bonfond, B., Grodent, D., Gérard, J.-C., Radioti, A., Saur, J., & Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity? Geophysical Research Letters, 35, L05107. https://doi.org/10.1029/2007GL032418
Bonfond, B., Hess, S. L. G., Bagenal, F., Gérard, J.-C., Grodent, D., Radioti, A., et al. (2013). The multiple spots of the Ganymede auroral footprint. Geophysical Research Letters, 40, 4977–4981. https://doi.org/10.1002/grl.50989
Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., Gérard, J. C., & Radioti, A. (2017). The tails of the satellite auroral footprints at Jupiter. Journal of Geophysical Research: Space Physics, 122, 7985–7996. https://doi.org/10.1002/2017JA024370
Clark, G., Kollmann, P., Saur, J., Mauk, B. H., Paranicas, C., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Ebert, R. W., Garcia-Sage, K., Gershman, D. J., Hospodarsky, G., Haggerty, D., Hue, V., Imai, M., Kotsiaros, S., McComas, D. J., Rymer, A., Szalay, J. R., Sulaiman, A., & Westlake, J. (2020). Energetic proton acceleration associated with Io's footprint tail. Geophysical Research Letters.
Clarke, J. T., Ballester, G. E., Trauger, J., Evans, R., Connerney, J. E. P., Stapelfeldt, K., Crisp, D., Feldman, P. D., Burrows, C. J., Casertano, S., Gallagher, J. S., Griffiths, R. E., Hester, J. J., Hoessel, J. G., Holtzman, J. A., Krist, J. E., Meadows, V., Mould, J. R., Scowen, P. A., Watson, A. M., & Westphal, J. A. (1996). Far-ultraviolet imaging of Jupiter's Aurora and the Io “Footprint”. Science, 274(5286), 404–409. https://doi.org/10.1126/science.274.5286.404
Connerney, J. E. P., Açuna, M. H., & Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. Journal of Geophysical Research, 86(A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370
Connerney, J. E. P., Baron, R., Satoh, T., & Owen, T. (1993). Images of excited H3+ at the foot of the lo flux tube in Jupiter's atmosphere. Science, 262(5136), 1035–1038. https://doi.org/10.1126/science.262.5136.1035
Connerney, J. E. P., Benn, M., Bjarno, J. B., Denver, T., Espley, J., Jorgensen, J. L., Jorgensen, P. S., Lawton, P., Malinnikova, A., Merayo, J. M., Murphy, S., Odom, J., Oliversen, R., Schnurr, R., Sheppard, D., & Smith, E. J. (2017). The Juno magnetic field investigation. Space Science Reviews, 213(1–4), 39–138. https://doi.org/10.1007/s11214-017-0334-z
Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K. M., Bolton, S. J., & Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophysical Research Letters, 45, 2590–2596. https://doi.org/10.1002/2018GL077312
Crary, F. J., & Bagenal, F. (1997). Coupling the plasma interaction at Io to Jupiter. Geophysical Research Letters, 24(17), 2135–2138. https://doi.org/10.1029/97GL02248
Damiano, P. A., Delamere, P. A., Staffer, B., Ng, C.-S., & Johnson, J. R. (2019). Kinetic simulations of electron acceleration by dispersive scale Alfvén waves in Jupiter's magnetosphere. Geophysical Research Letters, 46, 3043–3051. https://doi.org/10.1029/2018GL081219
Delamere, P. A., Bagenal, F., Ergun, R. E., & Su, Y. J. (2003). Momentum transfer between the Io plasma wake and Jupiter's ionosphere. Journal of Geophysical Research, 108(A6), 1241. https://doi.org/10.1029/2002JA009530
Dulk, G. A. (1965). Related Radio Emission from Jupiter. Science, 148. https://doi.org/10.1126/science.148.3677.1585
Ebert, R. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., Levin, S., Louarn, P., Mauk, B. H., McComas, D. J., Paranicas, C., Reno, M., Saur, J., Szalay, J. R., Thomsen, M. F., Valek, P., Weidner, S., & Wilson, R. J. (2017). Spatial distribution and properties of 0.1-100 keV electrons in Jupiter's polar Auroral region. Geophysical Research Letters, 44, 9199–9207. https://doi.org/10.1002/2017GL075106
Ebert, R. W., Greathouse, T. K., Clark, G., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Gladstone, G. R., Imai, M., Hue, V., Kurth, W. S., Levin, S., Louarn, P., Mauk, B. H., McComas, D. J., Paranicas, C., Szalay, J. R., Thomsen, M. F., Valek, P. W., & Wilson, R. J. (2019). Comparing Electron energetics and UV brightness in Jupiter's northern polar region during Juno Perijove 5. Geophysical Research Letters, 46, 19–27. https://doi.org/10.1029/2018GL081129
Ergun, R. E., Ray, L., Delamere, P. A., Bagenal, F., Dols, V., & Su, Y. J. (2009). Generation of parallel electric fields in the Jupiter-Io torus wake region. Journal of Geophysical Research, 114, A05201. https://doi.org/10.1029/2008JA013968
Gershman, D. J., Connerney, J. E. P., Kotsiaros, S., DiBraccio, G. A., Martos, Y. M., Viñas, A. F., Hue, V., Clark, G., Bagenal, F., Levin, S., & Bolton, S. J. (2019). Alfvénic fluctuations associated with Jupiter's auroral emissions. Geophysical Research Letters, 46, 7157–7165. https://doi.org/10.1029/2019GL082951
Goertz, C. (1980). Io's interaction with the plasma torus. Journal of Geophysical Research, 85(A6), 2949–2956. https://doi.org/10.1029/JA085iA06p02949
Grodent, D. (2015). A brief review of ultraviolet auroral emissions on giant planets. Space Science Reviews, 187(1-4), 23–50. https://doi.org/10.1007/s11214-014-0052-8
Gurnett, D. A., & Goertz, C. K. (1981). Multiple Alfven wave reflections excited by Io: Origin of the Jovian decametric arcs. Journal of Geophysical Research, 86(A2), 717. https://doi.org/10.1029/JA086ia02p00717
Hess, S. L. G., Bonfond, B., Chantry, V., Gérard, J.-C., Grodent, D., Jacobsen, S., & Radioti, A. (2013). Evolution of the Io footprint brightness II: Modeling. Planetary and Space Science, 88(C), 76–85. https://doi.org/10.1016/j.pss.2013.08.005
Hess, S. L. G., Delamere, P. A., Dols, V., Bonfond, B., & Swift, D. (2010). Power transmission and particle acceleration along the Io flux tube. Journal of Geophysical Research, 115, A06205. https://doi.org/10.1029/2009JA014928
Hess, S. L. G., Zarka, P., Mottez, F., & Ryabov, V. B. (2009). Electric potential jumps in the Io-Jupiter flux tube. Planetary and Space Science, 57(1), 23–33. https://doi.org/10.1016/j.pss.2008.10.006
Hill, T. W., & Vasyliunas, V. M. (2002). Jovian auroral signature of Io's corotational wake. Journal of Geophysical Research, 107(A12), 1464 https://doi.org/10.1029/2002JA009514
Hinton, P. C., Bagenal, F., & Bonfond, B. (2019). Alfvén wave propagation in the Io plasma torus. Geophysical Research Letters, 46, 1242–1249. https://doi.org/10.1029/2018GL081472
Hue, V., Greathouse, T. K., Bonfond, B., Saur, J., Gladstone, G. R., Roth, L., Davis, M. W., Gérard, J. C., Grodent, D. C., Kammer, J. A., Szalay, J. R., Versteeg, M. H., Bolton, S. J., Connerney, J. E. P., Levin, S. M., Hinton, P. C., & Bagenal, F. (2019). Juno-UVS observation of the Io footprint during solar eclipse. Journal of Geophysical Research: Space Physics, 124, 5184–5199. https://doi.org/10.1029/2018JA026431
Ingersoll, A. P., Vasavada, A. R., Little, B., Anger, C. D., Bolton, S. J., Alexander, C., Klaasen, K. P., & Tobiska, W. K. (1998). Imaging Jupiter's aurora at visible wavelengths. Icarus, 135(1), 251–264. https://doi.org/10.1006/icar.1998.5971
Jacobsen, S., Neubauer, F. M., Saur, J., & Schilling, N. (2007). Io's nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophysical Research Letters, 34, L10202. https://doi.org/10.1029/2006GL029187
Jacobsen, S., Saur, J., Neubauer, F. M., Bonfond, B., Gérard, J.-C., & Grodent, D. (2010). Location and spatial shape of electron beams in Io's wake. Journal of Geophysical Research, 115, A04205. https://doi.org/10.1029/2009JA014753
Jones, S. T., & Su, Y.-J. (2008). Role of dispersive Alfvén waves in generating parallel electric fields along the Io-Jupiter fluxtube. Journal of Geophysical Research, 113, A12205. https://doi.org/10.1029/2008JA013512
Lysak, R. L., & Lotko, W. (1996). On the kinetic dispersion relation for shear Alfvén waves. Journal of Geophysical Research, 101(A3), 5085–5094. https://doi.org/10.1029/95JA03712
Louis, C. K., Lamy, L., Zarka, P., Cecconi, B., Imai, M., Kurth, W. S., Hospodarsky, G., Hess, S. L. G., Bonnin, X., Bolton, S., Connerney, J. E. P., & Levin, S. M. (2017). Io-Jupiter decametric arcs observed by Juno/waves compared to ExPRES simulations. Geophysical Research Letters, 44, 9225–9232. https://doi.org/10.1002/2017GL073036
Louis, C. K., Prangé, R., Lamy, L., Zarka, P., Imai, M., Kurth, W. S., & Connerney, J. E. P. (2019). Jovian Auroral radio sources detected in situ by Juno/waves: Comparisons with model auroral ovals and simultaneous HST FUV images. Geophysical Research Letters, 46, 11,606–11,614. https://doi.org/10.1029/2019GL084799
Markwardt, C. B. (2009). Non-linear least-squares fitting in IDL with MPFIT (Vol. 411, p. 251). Paper presented at Astronomical Data Analysis Software and Systems XVIII, ASP Conference Series.
Matsuda, K., Terada, N., Katoh, Y., & Misawa, H. (2012). A simulation study of the current-voltage relationship of the Io tail aurora. Journal of Geophysical Research, 117, A10214. https://doi.org/10.1029/2012JA017790
Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., Mitchell, D. G., Bolton, S. J., Levin, S. M., Adriani, A., Allegrini, F., Bagenal, F., Connerney, J. E. P., Gladstone, G. R., Kurth, W. S., McComas, D. J., Ranquist, D., Szalay, J. R., & Valek, P. (2017). Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. Geophysical Research Letters, 44, 4410–4418. https://doi.org/10.1002/2016GL072286
McComas, D. J., Alexander, N., Allegrini, F., Bagenal, F., Beebe, C., Clark, G., Crary, F., Desai, M. I., de Los Santos, A., Demkee, D., Dickinson, J., Everett, D., Finley, T., Gribanova, A., Hill, R., Johnson, J., Kofoed, C., Loeffler, C., Louarn, P., Maple, M., Mills, W., Pollock, C., Reno, M., Rodriguez, B., Rouzaud, J., Santos-Costa, D., Valek, P., Weidner, S., Wilson, P., Wilson, R. J., & White, D. (2017). The Jovian auroral distributions experiment (JADE) on the Juno mission to Jupiter. Space Science Review, 213(1–4), 547–643. https://doi.org/10.1007/s11214-013-9990-9
Mura, A., Adriani, A., Connerney, J. E. P., Bolton, S., Altieri, F., Bagenal, F., Bonfond, B., Dinelli, B. M., Gérard, J. C., Greathouse, T., Grodent, D., Levin, S., Mauk, B., Moriconi, M. L., Saur, J., Waite, J. H. Jr., Amoroso, M., Cicchetti, A., Fabiano, F., Filacchione, G., Grassi, D., Migliorini, A., Noschese, R., Olivieri, A., Piccioni, G., Plainaki, C., Sindoni, G., Sordini, R., Tosi, F., & Turrini, D. (2018). Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. Science, 361(6404), 774–777. https://doi.org/10.1126/science.aat1450
Nénon, Q., Sicard, A., Kollmann, P., Garrett, H. B., Sauer, S. P. A., & Paranicas, C. P. (2018). A physical model of the proton radiation belts of Jupiter inside Europa's orbit. Journal of Geophysical Research: Space Physics, 123, 3512–3532. https://doi.org/10.1029/2018JA025216
Neubauer, F. M. (1980). Nonlinear standing Alfvén wave current system at Io: Theory. Journal of Geophysical Research, 85(A3), 1171–1178. https://doi.org/10.1029/JA085ia03p01171
Paranicas, C., Mauk, B. H., Haggerty, D. K., Clark, G., Kollmann, P., Rymer, A. M., Westlake, J., Allen, R. C., Szalay, J., Ebert, R. W., Sulaiman, A. H., Imai, M., Roussos, E., Krupp, N., Nénon, Q., Bagenal, F., & Bolton, S. J. (2019). Io's effect on energetic charged particles as seen in Juno data. Geophysical Research Letters, 46, 13,615–13,620. https://doi.org/10.1029/2019GL085393
Pryor, W. R., Rymer, A. M., Mitchell, D. G., Hill, T. W., Young, D. T., Saur, J., Jones, G. H., Jacobsen, S., Cowley, S. W. H., Mauk, B. H., Coates, A. J., Gustin, J., Grodent, D., Gérard, J. C., Lamy, L., Nichols, J. D., Krimigis, S. M., Esposito, L. W., Dougherty, M. K., Jouchoux, A. J., Stewart, A. I. F., McClintock, W. E., Holsclaw, G. M., Ajello, J. M., Colwell, J. E., Hendrix, A. R., Crary, F. J., Clarke, J. T., & Zhou, X. (2011). The auroral footprint of Enceladus on Saturn. Nature Publishing Group, 472(7343), 331–333. https://doi.org/10.1038/nature09928
Radioti, A., Lystrup, M., Bonfond, B., Grodent, D., & Gérard, J.-C. (2013). Jupiter's aurora in ultraviolet and infrared: Simultaneous observations with the Hubble Space Telescope and the NASA infrared telescope facility, Journal of Geophysical Research: Space Physics, 118, 2286–2295. https://doi.org/10.1002/jgra.50245
Saur, J., Grambusch, T., Duling, S., Neubauer, F. M., & Simon, S. (2013). Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astronomy and Astrophysics, 552, A119. https://doi.org/10.1051/0004-6361/201118179
Saur, J., Janser, S., Schreiner, A., Clark, G., Mauk, B. H., Kollmann, P., Ebert, R. W., Allegrini, F., Szalay, J. R., & Kotsiaros, S. (2018). Wave-particle interaction of Alfvén waves in Jupiter's magnetosphere: Auroral and magnetospheric particle acceleration. Journal of Geophysical Research: Space Physics, 123, 9560–9573. httpss://doi.org/10.1029/2018JA025948
Saur, J., Neubauer, F. M., Connerney, J. E. P., Zarka, P., & Kivelson, M. G. (2004). Plasma interaction of Io with its plasma torus. Jupiter: The Planet, Satellites and Magnetosphere, 1, 537–560.
Su, Y.-J., Ergun, R. E., Bagenal, F., & Delamere, P. A. (2003). Io-related Jovian auroral arcs: Modeling parallel electric fields. Journal of Geophysical Research, 108(A2), 151–111. https://doi.org/10.1029/2002JA009247
Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S., Gurnett, D. A., Imai, M., Allegrini, F., Bonfond, B., Clark, G., Connerney, J. E. P., Ebert, R. W., Gershman, D. J., Hue, V., Janser, S., Kotsiaros, S., Paranicas, C., Santolik, O., Saur, J., Szalay, J. R., Bolton, S. J. (2020). Wave-particle interactions associated with Io's auroral footprint: Evidence of Alfvén, ion cyclotron, and whistler modes, Geophysical Reasearch Letters, 47, e2020GL088432. https://doi.org/10.1029/2020GL088432
Sulaiman, A. H., Kurth, W. S., Hospodarsky, G. B., Averkamp, T. F., Ye, S. Y., Menietti, J. D., Farrell, W. M., Gurnett, D. A., Persoon, A. M., Dougherty, M. K., & Hunt, G. J. (2018). Enceladus auroral hiss emissions during Cassini's grand finale. Geophysical Research Letters, 45, 7347–7353. https://doi.org/10.1029/2018GL078130
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., Dougherty, L. P., Ebert, R. W., Gershman, D. J., Kurth, W. S., Levin, S., Louarn, P., Mauk, B., McComas, D. J., Paranicas, C., Ranquist, D., Reno, M., Thomsen, M. F., Valek, P. W., Weidner, S., & Wilson, R. J. (2017). Plasma measurements in the Jovian polar region with Juno/JADE. Geophysical Research Letters, 44, 7122–7130. https://doi.org/10.1002/2017GL072837
Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., Connerney, J. E. P., Ebert, R. W., Gershman, D. J., Giles, R. S., Gladstone, G. R., Greathouse, T., Hospodarsky, G. B., Imai, M., Kurth, W. S., Kotsiaros, S., Louarn, P., McComas, D. J., Saur, J., Sulaiman, A. H., & Wilson, R. J. (2020). Alfvénic acceleration sustains Ganymede's footprint tail aurora. Geophysical Research Letters, 47, e2019GL086527). https://doi.org/10.1029/2019GL086527
Szalay, J. R., Bagenal, F., Allegrini, F., Bonfond, B., Clark, G., Connerney, J. E. P., Crary, F., Ebert, R. W., Ergun, R. E., Gershman, D. J., Hinton, P. C., Imai, M., Janser, S., McComas, D. J., Paranicas, C., Saur, J., Sulaiman, A. H., Thomsen, M. F., Wilson, R. J., Bolton, S., & Levin, S. M. (2020). Proton acceleration by Io's Alfvénic interaction. Journal of Geophysical Research: Space Physics, 125, e2019JA027314. https://doi.org/10.1029/2019JA027314
Szalay, J. R., Bonfond, B., Allegrini, F., Bagenal, F., Bolton, S., Clark, G., Connerney, J. E. P., Ebert, R. W., Ergun, R. E., Gladstone, G. R., Grodent, D., Hospodarsky, G. B., Hue, V., Kurth, W. S., Kotsiaros, S., Levin, S. M., Louarn, P., Mauk, B., McComas, D. J., Saur, J., Valek, P. W., & Wilson, R. J. (2018). In situ observations connected to the Io footprint tail aurora. Journal of Geophysical Research: Planets, 123, 3061–3077. https://doi.org/10.1029/2018JE005752
Valek, P. W., Allegrini, F., Bagenal, F., Bolton, S. J., Connerney, J. E. P., Ebert, R. W., Kim, T. K., Levin, S. M., Louarn, P., Mccomas, D. J., Szalay, J. R., Thomsen, M. F., & Wilson, R. J. (2019). Jovian high-latitude ionospheric ions: Juno in situ observations. Geophysical Research Letters, 46, 8663–8670. https://doi.org/10.1029/2019GL084146
Warwick, J. W., Pearce, J. B., Riddle, A. C., Alexander, J. K., Desch, M. D., Kaiser, M. L., et al. (1979). Voyager 1 planetary radio astronomy observations near Jupiter. Science, 204(4396), 995–998. https://doi.org/10.1126/science.204.4396.995
Watt, C. E. J., & Rankin, R. (2007). Electron acceleration due to inertial Alfvén waves in a non-Maxwellian plasma. Journal of Geophysical Research, 112, A04214. https://doi.org/10.1029/2006JA011907
Watt, C. E. J., & Rankin, R. (2012). Alfvén wave acceleration of auroral electrons in warm magnetospheric plasma, in auroral phenomenology and magnetospheric processes: Earth and other planets. Geophysical Monograph Series, 197.
Zarka, P. (1998). Auroral radio emissions at the outer planets: Observations and theories. Journal of Geophysical Research, 103(E9), 20,159–20,194. https://doi.org/10.1029/98JE01323
Zarka, P. (2007). Plasma interactions of exoplanets with their parent star and associated radio emissions. Planetary and Space Science, 55(5), 598–617. https://doi.org/10.1016/j.pss.2006.05.045
Zarka, P., Marques, M. S., Louis, C., Ryabov, V. B., Lamy, L., Echer, E., & Cecconi, B. (2018). Jupiter radio emission induced by Ganymede and consequences for the radio detection of exoplanets. Astronomy and Astrophysics, 618, A84–A89. https://doi.org/10.1051/0004-6361/201833586
Publications similaires
Sorry the service is unavailable at the moment. Please try again later.
L’Université de Liège souhaite utiliser des cookies ou traceurs pour stocker et accéder à des données à caractère personnel vous concernant pour effectuer des mesures d’audience et permettre des fonctionnalités liées aux réseaux sociaux. Certains cookies sont nécessaires au fonctionnement du site.
Vous pouvez autoriser ou refuser tout ou partie de ces traitements de données qui sont basés sur votre consentement, à l\'exception des cookies et/ou traceurs nécessaires au fonctionnement de ce site. Vous pouvez modifier vos choix à tout moment.En savoir plus
Sauvegarder et fermer
Accepter tout
Refuser tout
Afficher les détailsMasquer les détails
Déclaration relative aux cookies
À propos des cookies
Strictement nécessaires
Performance
Les cookies strictement nécessaires habilitent des fonctionnalités de base du site Web telles que la connexion des utilisateurs et la gestion des comptes. Le site Web ne peut pas être utilisé correctement sans les cookies strictement nécessaires.
Cookie de session de plate-forme à usage général, utilisé par les sites écrits en JSP. Habituellement utilisé pour maintenir une session utilisateur anonyme par le serveur.
Ce cookie est utilisé par le service Cookie-Script.com pour mémoriser les préférences de consentement des visiteurs en matière de cookies. Il est nécessaire pour que la bannière de cookies Cookie-Script.com fonctionne correctement.
Les cookies de performance sont utilisés pour voir comment les visiteurs utilisent le site Web, par exemple les cookies d\'analyse. Ces cookies ne peuvent pas être utilisés pour identifier directement un visiteur spécifique.
Ce nom de cookie est associé à la plateforme d'analyse Web open source Matomo. Il est utilisé pour aider les propriétaires de sites Web à suivre le comportement des visiteurs et à mesurer les performances du site. Il s'agit d'un cookie de type modèle, où le préfixe _pk_id est suivi d'une courte série de chiffres et de lettres, qui est censé être un code de référence pour le domaine définissant le cookie.
Ce nom de cookie est associé à la plateforme d'analyse Web open source Matomo. Il est utilisé pour aider les propriétaires de sites Web à suivre le comportement des visiteurs et à mesurer les performances du site. Il s'agit d'un cookie de type modèle, où le préfixe _pk_ses est suivi d'une courte série de chiffres et de lettres, ce qui est considéré comme un code de référence pour le domaine définissant le cookie.
Ce nom de cookie est associé à la plateforme d'analyse Web open source Matomo. Il est utilisé pour aider les propriétaires de sites Web à suivre le comportement des visiteurs et à mesurer les performances du site. Il s'agit d'un cookie de type modèle, où le préfixe _pk_ref est suivi d'une courte série de chiffres et de lettres, ce qui est considéré comme un code de référence pour le domaine définissant le cookie.
Les cookies sont de petits fichiers texte qui sont placés sur votre ordinateur par les sites Web que vous visitez. Les sites Web utilisent des cookies pour aider les utilisateurs à naviguer efficacement et à exécuter certaines fonctions. Les cookies nécessaires au bon fonctionnement du site Web peuvent être configurés sans votre autorisation. Tous les autres cookies doivent être approuvés avant de pouvoir être configurés dans le navigateur.
Vous pouvez modifier votre consentement à l\'utilisation des cookies à tout moment sur notre page Politique de confidentialité.