95% confidence interval, (95% CI); Blood; CKD-EPI equation based on creatinine and cystatin c combined, (eGFRcr-cys); CKD-EPI equation based on cystatin c, (eGFRcys); CKD-EPI equation based on serum creatinine, (eGFRcr); Case-control study; Fanconi syndrome; Hereditary fructose intolerance; Kidney; Vessels; alanine, (Ala); aldolase B, (ALDOB); arginine, (Arg); asparagine, (Asn); carotid-femoral pulse wave velocity, (cf-PWV); chronic kidney disease epidemiology collaboration, (CKD-EPI); citrulline, (Cit); cysteine, (Cys); difference, (Δ); estimated glomerular filtration rate, (eGFR); glucokinase regulatory protein, (GKRP); glutamic acid, (Glu); glutamine, (Gln); glycine, (Gly); hereditary fructose intolerance, (HFI); histidine, (His); intrahepatic triglyceride, (IHTG); isoleucine, (Ile); laser doppler flowmetry, (LDF); leucine, (Leu); lysine, (Lys); methionine, (Met); ornithine, (Orn); perfusion units, (PU); phenylalanine, (Phe); proline, (Pro); ratio of tubular maximum reabsorption of phosphate to GFR, (TmP/GFR); reactive hyperemia index, (RHI); reactive hyperemia peripheral arterial tonometry, (RH-PAT); serine, (Ser); soluble E-selectin, (sE-selectin); statistical package of social sciences, (SPSS); taurine, (Tau); threonine, (Thr); tryptophan, (Try); tubular reabsorption of phosphate, (TRP); tyrosine, (Tyr); valine, (Val); von willebrand factor, (vWF)
Abstract :
[en] Objective: Previous studies have shown that patients with hereditary fructose intolerance (HFI) are characterized by a greater intrahepatic triglyceride content, despite a fructose-restricted diet. The present study aimed to examine the long-term consequences of HFI on other aldolase-B-expressing organs, i.e. the kidney and vascular endothelium. Methods: Fifteen adult HFI patients were compared to healthy control individuals matched for age, sex and body mass index. Aortic stiffness was assessed by carotid-femoral pulse wave velocity (cf-PWV) and endothelial function by peripheral arterial tonometry, skin laser doppler flowmetry and the endothelial function biomarkers soluble E-selectin [sE-selectin] and von Willebrand factor. Serum creatinine and cystatin C were measured to estimate the glomerular filtration rate (eGFR). Urinary glucose and amino acid excretion and the ratio of tubular maximum reabsorption of phosphate to GFR (TmP/GFR) were determined as measures of proximal tubular function. Results: Median systolic blood pressure was significantly higher in HFI patients (127 versus 122 mmHg, p = .045). Pulse pressure and cf-PWV did not differ between the groups (p = .37 and p = .49, respectively). Of all endothelial function markers, only sE-selectin was significantly higher in HFI patients (p = .004). eGFR was significantly higher in HFI patients than healthy controls (119 versus 104 ml/min/1.73m(2), p = .001, respectively). All measurements of proximal tubular function did not differ significantly between the groups. Conclusions: Adult HFI patients treated with a fructose-restricted diet are characterized by a higher sE-selectin level and slightly higher systolic blood pressure, which in time could contribute to a greater cardiovascular risk. The exact cause and, hence, clinical consequences of the higher eGFR in HFI patients, deserves further study.
Disciplines :
Genetics & genetic processes
Author, co-author :
Simons, Nynke
Debray, François-Guillaume ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Maladies métaboliques d'origine génétique
Schaper, Nicolaas C.
Feskens, Edith J. M.
Hollak, Carla E. M.
Bons, Judith A. P.
Bierau, Jörgen
Houben, Alfons J. H. M.
Schalkwijk, Casper G.
Stehouwer, Coen D. A.
Cassiman, David
Brouwers, Martijn C. G. J.
Language :
English
Title :
Kidney and vascular function in adult patients with hereditary fructose intolerance.
Ali, M., Rellos, P., Cox, T.M., Hereditary fructose intolerance. J. Med. Genet. 35 (1998), 353–365.
Cross, N.C., de Franchis, R., Sebastio, G., Dazzo, C., Tolan, D.R., Gregori, C., Odievre, M., Vidailhet, M., Romano, V., Mascali, G., et al. Molecular analysis of aldolase B genes in hereditary fructose intolerance. Lancet (London, England) 335 (1990), 306–309.
Fagerberg, L., Hallstrom, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjostedt, E., Lundberg, E., Szigyarto, C.A., Skogs, M., Takanen, J.O., Berling, H., Tegel, H., Mulder, J., Nilsson, P., Schwenk, J.M., Lindskog, C., Danielsson, F., Mardinoglu, A., Sivertsson, A., von Feilitzen, K., Forsberg, M., Zwahlen, M., Olsson, I., Navani, S., Huss, M., Nielsen, J., Ponten, F., Uhlen, M., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 13 (2014), 397–406.
Odievre, M., Gentil, C., Gautier, M., Alagille, D., Hereditary fructose intolerance in childhood. Diagnosis, management, and course in 55 patients. Am. J. Dis. Child. 132 (1978), 605–608 (1960).
Baerlocher, K., Gitzelmann, R., Steinmann, B., Gitzelmann-Cumarasamy, N., Hereditary fructose intolerance in early childhood: a major diagnostic challenge. Survey of 20 symptomatic cases. Helv. Paediatr. Acta 33 (1978), 465–487.
Mock, D.M., Perman, J.A., Thaler, M., Morris, R.C. Jr., Chronic fructose intoxication after infancy in children with hereditary fructose intolerance. A cause of growth retardation. N. Engl. J. Med. 309 (1983), 764–770.
von Ruecker, A., Endres, W., Shin, Y.S., Butenandt, I., Steinmann, B., Gitzelmann, R., A case of fatal hereditary fructose intolerance. Misleading information of formula composition. Helv. Paediatr. Acta 36 (1981), 599–600.
Simons, N., Debray, F.G., Schaper, N.C., Kooi, M.E., Feskens, E.J.M., Hollak, C.E.M., Lindeboom, L., Koek, G.H., Bons, J.A.P., Lefeber, D.J., Hodson, L., Schalkwijk, C.G., Stehouwer, C.D.A., Cassiman, D., Brouwers, M., Patients with aldolase B deficiency are characterized by increased intrahepatic triglyceride content. J. Clin. Endocrinol. Metab. 104 (2019), 5056–5064.
Aldamiz-Echevarria, L., de Las Heras, J., Couce, M.L., Alcalde, C., Vitoria, I., Bueno, M., Blasco-Alonso, J., Concepcion Garcia, M., Ruiz, M., Suarez, R., Andrade, F., Villate, O., Non-alcoholic fatty liver in hereditary fructose intolerance. Clin. Nutr. 39 (2020), 455–459 (Edinburgh, Scotland).
Di Dato, F., Spadarella, S., Puoti, M.G., Caprio, M.G., Pagliardini, S., Zuppaldi, C., Vallone, G., Fecarotta, S., Esposito, G., Iorio, R., Parenti, G., Spagnuolo, M.I., Daily fructose traces intake and liver injury in children with hereditary fructose intolerance. Nutrients, 11, 2019.
Liu, J., Mak, T.C., Banigesh, A., Desai, K., Wang, R., Wu, L., Aldolase B knockdown prevents high glucose-induced methylglyoxal overproduction and cellular dysfunction in endothelial cells. PLoS One, 7, 2012, e41495.
Cao, W., Chang, T., Li, X.Q., Wang, R., Wu, L., Dual effects of fructose on ChREBP and FoxO1/3alpha are responsible for AldoB up-regulation and vascular remodelling. Clin. Sci. 131 (2017), 309–325 (London, England: 1979).
Liu, J., Wang, R., Desai, K., Wu, L., Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovasc. Res. 92 (2011), 494–503.
World Medical Association Declaration of Helsinki, Ethical principles for medical research involving human subjects. JAMA 310 (2013), 2191–2194.
Stehouwer, C.D., Henry, R.M., Ferreira, I., Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia 51 (2008), 527–539.
Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., Pannier, B., Vlachopoulos, C., Wilkinson, I., Struijker-Boudier, H., A European network for non-invasive investigation of large, Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27 (2006), 2588–2605.
Stehouwer, C.D.A., Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences. Diabetes 67 (2018), 1729–1741.
Bonetti, P.O., Pumper, G.M., Higano, S.T., Holmes, D.R. Jr., Kuvin, J.T., Lerman, A., Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 44 (2004), 2137–2141.
Rajan, V., Varghese, B., van Leeuwen, T.G., Steenbergen, W., Review of methodological developments in laser doppler flowmetry. Lasers Med. Sci. 24 (2009), 269–283.
Sorensen, B.M., Houben, A.J., Berendschot, T.T., Schouten, J.S., Kroon, A.A., van der Kallen, C.J., Henry, R.M., Koster, A., Sep, S.J., Dagnelie, P.C., Schaper, N.C., Schram, M.T., Stehouwer, C.D., Prediabetes and Type 2 diabetes are associated with generalized microvascular dysfunction: The Maastricht Study. Circulation 134 (2016), 1339–1352.
Choi, P.J., Brunt, V.E., Fujii, N., Minson, C.T., New approach to measure cutaneous microvascular function: an improved test of NO-mediated vasodilation by thermal hyperemia. J. Appl. Physiol. 117:2014 (1985), 277–283 (Bethesda, Md.).
Levey, A.S., Stevens, L.A., Schmid, C.H., Zhang, Y.L., Castro, A.F. 3rd, Feldman, H.I., Kusek, J.W., Eggers, P., Van Lente, F., Greene, T., Coresh, J., A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150 (2009), 604–612.
Waterval, W.A., Scheijen, J.L., Ortmans-Ploemen, M.M., Habets-van der Poel, C.D., Bierau, J., Quantitative UPLC-MS/MS analysis of underivatised amino acids in body fluids is a reliable tool for the diagnosis and follow-up of patients with inborn errors of metabolism. Clin. Chim. Acta 407 (2009), 36–42.
Payne, R.B., Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann. Clin. Biochem. 35:Pt 2 (1998), 201–206.
Rijksinstituut voor Volksgezondheid en Milieu (National Institute for Public Health and the Environment), NEVO-tabel (Dutch Food Composition Table). Nederlands Voedingsstoffenbestand 2010 (Dutch Food Composition Database 2010). 2010, RIVM, Den Haag.
Sluik, D., Engelen, A.I., Feskens, E.J., Fructose consumption in the Netherlands: the Dutch National Food Consumption Survey 2007-2010. Eur. J. Clin. Nutr. 69 (2015), 475–481.
Okada, R., Yasuda, Y., Tsushita, K., Wakai, K., Hamajima, N., Matsuo, S., Glomerular hyperfiltration in prediabetes and prehypertension. Nephrol. Dial. Transplant. 27 (2012), 1821–1825.
Schwingshackl, L., Hoffmann, G., Comparison of high vs. normal/low protein diets on renal function in subjects without chronic kidney disease: a systematic review and meta-analysis. PLoS One, 9, 2014, e97656.
Froesch, E.R., Wolf, H.P., Baitsch, H., Prader, A., Labhart, A., Hereditary fructose intolerance. An inborn defect of hepatic fructose-1-phosphate splitting aldolase. Am. J. Med. 34 (1963), 151–167.
Esposito, G., Imperato, M.R., Ieno, L., Sorvillo, R., Benigno, V., Parenti, G., Parini, R., Vitagliano, L., Zagari, A., Salvatore, F., Hereditary fructose intolerance: functional study of two novel ALDOB natural variants and characterization of a partial gene deletion. Hum. Mutat. 31 (2010), 1294–1303.
Whelton, P.K., Carey, R.M., Aronow, W.S., Casey, D.E. Jr., Collins, K.J., Dennison Himmelfarb, C., DePalma, S.M., Gidding, S., Jamerson, K.A., Jones, D.W., MacLaughlin, E.J., Muntner, P., Ovbiagele, B., Smith, S.C. Jr., Spencer, C.C., Stafford, R.S., Taler, S.J., Thomas, R.J., Williams, K.A. Sr., Williamson, J.D., Wright, J.T. Jr., 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension, 71, 2018 (Dallas, Tex.: 1979). e13-e115.
Sacks, F.M., Svetkey, L.P., Vollmer, W.M., Appel, L.J., Bray, G.A., Harsha, D., Obarzanek, E., Conlin, P.R., Miller, E.R. 3rd, Simons-Morton, D.G., Karanja, N., Lin, P.H., Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N. Engl. J. Med. 344 (2001), 3–10.
Kirkendall, A.M., Connor, W.E., Abboud, F., Rastogi, S.P., Anderson, T.A., Fry, M., The effect of dietary sodium chloride on blood pressure, body fluids, electrolytes, renal function, and serum lipids of normotensive man. J. Lab. Clin. Med. 87 (1976), 411–434.
Schachter, J., Harper, P.H., Radin, M.E., Caggiula, A.W., McDonald, R.H., Diven, W.F., Comparison of sodium and potassium intake with excretion. Hypertension 2 (1980), 695–699 (Dallas, Tex.: 1979).
Institute of Medicine, Strategies to Reduce Sodium Intake in the United States. 2010, National Academies Press, Washington, DC.
Lameire, N., Mussche, M., Baele, G., Kint, J., Ringoir, S., Hereditary fructose intolerance: a difficult diagnosis in the adult. Am. J. Med. 65 (1978), 416–423.
Norden, A.G., Sharratt, P., Cutillas, P.R., Cramer, R., Gardner, S.C., Unwin, R.J., Quantitative amino acid and proteomic analysis: very low excretion of polypeptides >750 Da in normal urine. Kidney Int. 66 (2004), 1994–2003.
Vinge, E., Lindergard, B., Nilsson-Ehle, P., Grubb, A., Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand. J. Clin. Lab. Invest. 59 (1999), 587–592.
Tangri, N., Stevens, L.A., Schmid, C.H., Zhang, Y.L., Beck, G.J., Greene, T., Coresh, J., Levey, A.S., Changes in dietary protein intake has no effect on serum cystatin C levels independent of the glomerular filtration rate. Kidney Int. 79 (2011), 471–477.
Levine, D.Z., Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration?: recognizing clinical and experimental uncertainties. Clin. Sci. 114 (2008), 109–118 (London, England: 1979).
Melsom, T., Stefansson, V., Schei, J., Solbu, M., Jenssen, T., Wilsgaard, T., Eriksen, B.O., Association of increasing GFR with change in albuminuria in the general population. Clin. J. Am. Soc. Nephrol. 11 (2016), 2186–2194.
Sun, Z.J., Yang, Y.C., Wu, J.S., Wang, M.C., Chang, C.J., Lu, F.H., Increased risk of glomerular hyperfiltration in subjects with impaired glucose tolerance and newly diagnosed diabetes. Nephrol. Dial. Transplant. 31 (2016), 1295–1301.
Lanaspa, M.A., Andres-Hernando, A., Orlicky, D.J., Cicerchi, C., Jang, C., Li, N., Milagres, T., Kuwabara, M., Wempe, M.F., Rabinowitz, J.D., Johnson, R.J., Tolan, D.R., Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice. J. Clin. Invest. 128 (2018), 2226–2238.
Beer, N.L., Tribble, N.D., McCulloch, L.J., Roos, C., Johnson, P.R., Orho-Melander, M., Gloyn, A.L., The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet. 18 (2009), 4081–4088.
Simons, P., Simons, N., Stehouwer, C.D.A., Schalkwijk, C.G., Schaper, N.C., Brouwers, M., Association of common gene variants in glucokinase regulatory protein with cardiorenal disease: A SYSTEMATIC review and meta-analysis. PLoS One, 13, 2018 e0206174.
Gu, Y., Mao, Y., Li, H., Zhao, S., Yang, Y., Gao, H., Yu, J., Zhang, X., Irwin, D.M., Niu, G., Tan, H., Long-term renal changes in the liver-specific glucokinase knockout mouse: implications for renal disease in maturity-onset diabetes of the young 2. Transl. Res. 157 (2011), 111–116.
Meigs, J.B., Hu, F.B., Rifai, N., Manson, J.E., Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. Jama 291 (2004), 1978–1986.
Hwang, S.J., Ballantyne, C.M., Sharrett, A.R., Smith, L.C., Davis, C.E., Gotto, A.M. Jr., Boerwinkle, E., Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation 96 (1997), 4219–4225.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.