This is a pre-copyedited, author-produced PDF of an article accepted for publication in MNRAS following peer review. The version of record MNRAS 498, 1420 is available online at: https://academic.oup.com/mnras/article/498/1/1420/5849454
All documents in ORBi are protected by a user license.
gravitational lensing: strong; cosmological parameters; distance scale; cosmology: observations; Astrophysics - Cosmology and Nongalactic Astrophysics; Astrophysics - Astrophysics of Galaxies
Abstract :
[en] We present a measurement of the Hubble constant (H[SUB]0[/SUB]) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analysed blindly with respect to the cosmological parameters. In a flat Λ cold dark matter (ΛCDM) cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}~\mathrm{km~s^{-1}~Mpc^{-1}}$ , a $2.4{{\ \rm per\ cent}}$ precision measurement, in agreement with local measurements of H[SUB]0[/SUB] from type Ia supernovae calibrated by the distance ladder, but in 3.1σ tension with Planck observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in 5.3σ tension with Planck CMB determinations of H[SUB]0[/SUB] in flat ΛCDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat ΛCDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from Planck, baryon acoustic oscillations, and type Ia supernovae. Time- delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with Planck. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our H[SUB]0[/SUB] inference to cosmological model assumptions. For six different cosmological models, our combined inference on H[SUB]0[/SUB] ranges from ∼73 to 78 km s[SUP]-1[/SUP] Mpc[SUP]-1[/SUP], which is consistent with the local distance ladder constraints.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Wong, Kenneth C.; Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
Chen, Geoff C.-F.; Department of Physics, University of California, Davis, CA 95616, USA
Rusu, Cristian E.; National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
Millon, Martin; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Sluse, Dominique ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Bonvin, Vivien; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Fassnacht, Christopher D.; Department of Physics, University of California, Davis, CA 95616, USA
Taubenberger, Stefan; Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching, Germany
Auger, Matthew W.; Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Birrer, Simon; Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
Chan, James H. H.; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Courbin, Frederic; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Tihhonova, Olga; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
Treu, Tommaso; Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
Agnello, Adriano; DARK, Niels-Bohr Institute, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
Ding, Xuheng; Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
Jee, Inh; Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85748 Garching, Germany
Komatsu, Eiichiro; Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
Shajib, Anowar J.; Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
Sonnenfeld, Alessandro; Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333 CA Leiden, the Netherlands
Blandford, Roger D.; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA
Koopmans, Léon V. E.; Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands
Marshall, Philip J.; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94035, USA
Meylan, Georges; Institute of Physics, Laboratory of Astrophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland)
Alexander S., McDonough E., 2019, Phys. Lett. B, 797, 134830
Anguita T. et al., 2018, MNRAS, 480, 5017
Arendse N., Agnello A., Wojtak R., 2019a, preprint (arXiv:1905.12000)
Arendse N. et al., 2019b, preprint (arXiv:1909.07986)
Astropy Collaboration, 2013, A&A, 558, A33
Astropy Collaboration, 2018, AJ, 156, 123
Aubourg E. et al., 2015, Phys. Rev. D, 92, 123516
Audren B., Lesgourgues J., Benabed K., Prunet S., 2013, J. Cosmol.Astropart. Phys., 2013, 001
Aylor K., Joy M., Knox L., Millea M., Raghunathan S., Kimmy Wu W. L., 2019, ApJ, 874, 4
Beaton R. L. et al., 2016, ApJ, 832, 210
Bernal J. L., Verde L., Riess A. G., 2016, J. Cosmol. Astropart. Phys., 2016, 019
Betoule M. et al., 2014, A&A, 568, A22
Beutler F. et al., 2011, MNRAS, 416, 3017
Birrer S., Amara A., 2018, Phys. Dark Universe, 22, 189
Birrer S., Amara A., Refregier A., 2015, ApJ, 813, 102
Birrer S., Amara A., Refregier A., 2016, J. Cosmol. Astropart. Phys., 8, 020
Birrer S. et al., 2019, MNRAS, 484, 4726
Blandford R., Narayan R., 1986, ApJ, 310, 568
Bonamente M., Joy M. K., LaRoque S. J., Carlstrom J. E., Reese E. D., Dawson K. S., 2006, ApJ, 647, 25
Bonvin V., Tewes M., Courbin F., Kuntzer T., Sluse D., Meylan G., 2016, A&A, 585, A88
Bonvin V. et al., 2017, MNRAS, 465, 4914
Bonvin V. et al., 2018, A&A, 616, A183
Bonvin V. et al., 2019, A&A, 629, A97
Braatz J. et al., 2018, in Tarchi A., Reid M. J., Castangia P., eds, Proc. IAU Symp. 336, Astrophysical Masers: Unlocking the Mysteries of the Universe. Cambridge Univ. Press, Cambridge, p. 86
McCully C., Keeton C. R.,Wong K. C., Zabludoff A. I., 2014, MNRAS, 443, 3631
McCully C., Keeton C. R.,Wong K. C., Zabludoff A. I., 2017, ApJ, 836, 141
Melnick J., Terlevich R., Terlevich E., 2000, MNRAS, 311, 629
Morgan N. D., Caldwell J. A. R., Schechter P. L., Dressler A., Egami E., Rix H.-W., 2004, AJ, 127, 2617
Morgan N. D., Kochanek C. S., Pevunova O., Schechter P. L., 2005, AJ, 129, 2531
Myers S. T. et al., 1995, ApJ, 447, L5
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Oguri M., 2007, ApJ, 660, 1
Oguri M., Marshall P. J., 2010, MNRAS, 405, 2579
Oguri M. et al., 2005, ApJ, 622, 106
Pandey K. L., Karwal T., Das S., 2019, preprint (arXiv:1902.10636)
Paraficz D., Hjorth J., 2009, A&A, 507, L49
Patrignani C., 2016, Chin. Phys. C, 40, 100001
Petters A. O., Levine H., Wambsganss J., 2001, Singularity Theory and Gravitational Lensing. Birkhäuser, Boston Planck Collaboration et al., 2018a, preprint (arXiv:1807.06205)
Planck Collaboration et al., 2018b, preprint (arXiv:1807.06209)
Poulin V., Smith T. L., Karwal T., Kamionkowski M., 2019, Phys. Rev. Lett., 122, 221301
Rathna Kumar S., Stalin C. S., Prabhu T. P., 2015, A&A, 580, A38
Reese E. D., Carlstrom J. E., Joy M., Mohr J. J., Grego L., Holzapfel W. L., 2002, ApJ, 581, 53
Refregier A., 2003, MNRAS, 338, 35
Refsdal S., 1964, MNRAS, 128, 307
Riess A. G. et al., 2016, ApJ, 826, 56
Riess A. G. et al., 2018, ApJ, 861, 126
Riess A. G., Casertano S., YuanW.,Macri L.M., Scolnic D., 2019, ApJ, 876, 85
Rigault M. et al., 2015, ApJ, 802, 20
Rigault M. et al., 2018, preprint (arXiv:1806.03849)
Roman M. et al., 2018, A&A, 615, A68
Rose B. M., Garnavich P. M., Berg M. A., 2019, ApJ, 874, 32
Ross A. J., Samushia L., Howlett C., Percival W. J., Burden A., Manera M., 2015, MNRAS, 449, 835
Rusu C. E. et al., 2017, MNRAS, 467, 4220
Rusu C. E. et al., 2019, preprint (arXiv:1905.09338)
Saha P., 2000, AJ, 120, 1654
Saha P., Coles J., Maccio A. V., Williams L. L. R., 2006, ApJ, 650, L17
Salamon M. H., Stecker F. W., de Jager O. C., 1994, ApJ, 423, L1
Sandage A., Tammann G. A., Saha A., Reindl B., Macchetto F. D., Panagia N., 2006, ApJ, 653, 843
Schechter P. L. et al., 1997, ApJ, 475, L85
Schmidt B. P., Kirshner R. P., Eastman R. G., Phillips M. M., Suntzeff N. B., Hamuy M., Maza J., Aviles R., 1994, ApJ, 432, 42
Schneider P., Sluse D., 2013, A&A, 559, A37
Schneider P., Ehlers J., Falco E. E., 1992, Gravitational Lenses. Springer Scolnic D. M. et al., 2018, ApJ, 859, 101
Seljak U., 1994, ApJ, 436, 509
Sereno M., Paraficz D., 2014, MNRAS, 437, 600
Shajib A. J., Treu T., Agnello A., 2018, MNRAS, 473, 210
Shajib A. J. et al., 2019a, MNRAS, 483, 5649
ShajibA. J. et al., 2019b, preprint (arXiv:1910.06306)
Silk J., White S. D. M., 1978, ApJ, 226, L103
Sluse D. et al., 2003, A&A, 406, L43
Sluse D., Claeskens J. F., Hutseḿekers D., Surdej J., 2007, A&A, 468, 885
Sluse D., Hutseḿekers D., Courbin F., Meylan G., Wambsganss J., 2012, A&A, 544, A62
Sluse D. et al., 2017, MNRAS, 470, 4838
Sluse D. et al., 2019, MNRAS, 490, 613
Soares-Santos M. et al., 2019, ApJ, 876, L7
Sonnenfeld A., 2018, MNRAS, 474, 4648
Springel V. et al., 2005, Nature, 435, 629
Suyu S. H., Halkola A., 2010, A&A, 524, A94
Suyu S. H., Marshall P. J., Auger M. W., Hilbert S., Blandford R. D., Koopmans L. V. E., Fassnacht C. D., Treu T., 2010, ApJ, 711, 201
Suyu S. H. et al., 2012, ApJ, 750, 10
Suyu S. H. et al., 2013, ApJ, 766, 70
Suyu S. H. et al., 2014, ApJ, 788, L35
Suyu S. H. et al., 2017, MNRAS, 468, 2590
Suyu S. H., Chang T.-C., Courbin F., Okumura T., 2018, Space Sci. Rev., 214, 91
Taubenberger S. et al., 2019, A&A, 628, L7
Tewes M., Courbin F., Meylan G., 2013a, A&A, 553, A120
Tewes M. et al., 2013b, A&A, 556, A22
Tie S. S., Kochanek C. S., 2018, MNRAS, 473, 80
Tihhonova O. et al., 2018, MNRAS, 477, 5657
Tonry J. L., 1998, AJ, 115, 1
Treu T., Koopmans L. V. E., 2002, MNRAS, 337, L6
Treu T., Marshall P. J., 2016, A&AR, 24, 11
Treu T., Gavazzi R., Gorecki A., Marshall P. J., Koopmans L. V. E., Bolton A. S., Moustakas L. A., Burles S., 2009, ApJ, 690, 670