elevated CO2; global change; nitrification; open top chambers; potential denitrification
Abstract :
[en] The control of soil nitrogen (N) availability under elevated atmospheric CO2 is central to predicting changes in ecosystem carbon (C) storage and primary productivity. The effects of elevated CO2 on belowground processes have so far attracted limited research and they are assumed to be controlled by indirect effects through changes in plant physiology and chemistry. In this study, we investigated the effects of a 4-year exposure to elevated CO2 (ambient + 400 mumol mol(-1) ) in open top chambers under Scots pine (Pinus sylvestris L) seedlings on soil microbial processes of nitrification and denitrification. Potential denitrification (DP) and potential N-2 O emissions were significantly higher in soils from the elevated CO2 treatment, probably regulated indirectly by the changes in soil conditions (increased pH, C availability and NO3 (-) production). Net N mineralization was mainly accounted for by nitrate production. Nitrate production was significantly larger for soil from the elevated CO2 treatment in the field when incubated in the laboratory under elevated CO2 (increase of 100%), but there was no effect when incubated under ambient CO2 . Net nitrate production of the soil originating from the ambient CO2 treatment in the field was not influenced by laboratory incubation conditions. These results indicate that a direct effect of elevated atmospheric CO2 on soil microbial processes might take place. We hypothesize that physiological adaptation or selection of nitrifiers could occur under elevated CO2 through higher soil CO2 concentrations. Alternatively, lower microbial NH4 assimilation under elevated CO2 might explain the higher net nitrification. We conclude that elevated atmospheric CO2 has a major direct effect on the soil microbial processes of nitrification and denitrification despite generally higher soil CO2 concentrations compared to atmospheric concentrations.
Carnol, Monique ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Ecologie végétale et microbienne
Hogenboom, L.; Université de Liège - ULiège > Sciences et gestions de L'Environnement > Ecologie végétale et microbienne
Jach, M. E.; Universiteit Antwerpen - UA > Department of Biology
Remacle, Jean ; Université de Liège - ULiège > Sciences et gestion de l'Environnement > Ecologie végétale et microbienne
Ceulemans, R.; Universiteit Antwerpen - UA > Department of Biology
Language :
English
Title :
Elevated atmospheric CO2 in open top chambers increases net nitrification and potential denitrification
Publication date :
2002
Journal title :
Global Change Biology
ISSN :
1354-1013
eISSN :
1365-2486
Publisher :
Blackwell Publishing Ltd, Oxford, United Kingdom
Volume :
8
Pages :
590-598
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
SSTC - Services Fédéraux des Affaires Scientifiques, Techniques et Culturelles ULiège - Université de Liège F.R.S.-FNRS - Fonds de la Recherche Scientifique
Allen S.E. Chemical Analysis of Ecological Materials, Blackwell, Oxford, 368pp; 1989.
Arnone J.A., Bohlen P.J. (1998) Stimulated N2O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO2. Oecologia 116:331-335.
Carnol M. (1999) Abiotic factors controlling nitrification in acid forest soils. Going Underground - Ecological Studies in Forest Soils , (eds Rastin N, Bauhus J), Research Signpost, Trivandrum; 111-141.
Carnol M., Ineson P., Anderson J.M. (1997) The effects of ammonium sulphate deposition and root sinks on soil solution chemistry in coniferous forest soils. Biogeochemistry 38:255-280.
Carnol M., Ineson P., Dickinson A.L. (1997) Soil solution nitrogen and cations influenced by (NH4)2SO4 deposition in a coniferous forest. Environmental Pollution 97:1-10.
Castelle A.J., Galloway J.N. (1990) Carbon dioxide dynamics in acid forest soils in Shenandoah National Park, Virginia. Soil Science Society of America Journal 54:252-257.
Clarholm M. (1985) Interactions of bacteria, protozoa and plants leading to mineralisation of soil nitrogen. Soil Biology and Biochemistry 17:181-187.
Clark F.E. (1968) The growth of bacteria in soil. The Ecology of Soil Bacteria , (eds Gray TRG, Parkinson D), Liverpool University Press, Liverpool, UK; 441-457.
Cody R.P., Smith J.K. Applied Statistics and the SAS Programming Language, Elsevier Science Publishing Co., Inc., New York, 403 pp; 1991.
Cotrufo M.F., Briones M.J.I., Ineson P. (1998) Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: Importance of changes in substrate quality. Soil Biology and Biochemistry 30:1565-1571.
Cotrufo M.F., Ineson P. (1996) Elevated CO2 reduces field decomposition rates of Betula pendula (Roth) leaf litter. Oecologia 106:525-530.
Cotrufo M.F., Ineson P., Scott A. (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4:43-54.
Davidson E.A., Swank W.T. (1986) Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Applied and Environmental Microbiology 52:1287-1292.
Fernandez I.J., Kosian P.A. (1987) Soil air carbon dioxide concentrations in a New England spruce-fir forest. Soil Science Society of America Journal 51:261-263.
Firestone M.K., Davidson E.A. (1989) Microbiological basis of NO and N2O production and consumption in soil. Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere , (eds Andreae MO, Schimel DS), John Wiley and Sons, New York; 7-21.
Gobran G.R., Clegg S., Courchesne F. (1998) Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochemistry 42:107-120.
Grayston S.J., Vaughan D., Jones D. (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology 5:29-56.
Heinemeyer O., Kaiser E.A. (1996) Automated gas injector system for gas chromatography: Atmospheric nitrous oxide analysis. Soil Science Society of America Journal 60:808-811.
Hendershot W.H., Duquette M. (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Science Society of America Journal 50:605-608.
Henrich M., Hasselwandter K. (1991) Denitrifying potential and enzyme activity in a Norway spruce forest. Forest Ecology and Management 44:63-68.
Huntgate B.A., Lund C.P., Pearson H.L., Chapin F.S. (1997) Elevated CO2 and nutrient addition alter soil N cycling and trace gas fluxes with early season wet-up in a California annual grassland. Biogeochemistry 37:89-109.
Climate Change 2001: The Scientific Basis. WG I Contribution to the IPCC Third Assessment Report, IPCC Summary for Policymakers, IPCC-WGI. IPCC Secretariat C/O World Meteorological Organization Geneva 2, Switzerland, 12 pp; 2001.
Jach M.E., Ceulemans R. (1997) Impact of elevated CO2 on physiology and needle morphology of scots pine (Pinus sylvestris) seedlings. Impacts of Global Change on Tree Physiology and Forest Ecosystems , (eds Mohren GMJ, Kramer K, Sabate S), Kluwer, Academic Publishers, Dordrecht; 67-73.
Jach M.E., Ceulemans R. (1999) Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Scots pine (Pinus sylvestris) seedlings after two years of exposure in the field. Tree Physiology 19:289-300.
Jach M.E., Ceulemans R. (2000) Short-versus long-term effects of elevated CO2 on night-time respiration of needles of Scots pine (Pinus sylvestris L.). Photosynthetica 38:57-67.
Jach M.E., Laureysens I., Ceulemans R. (2000) Above and below-ground production of young Scots pine (Pinus sylvestris L.) trees after three years of growth in the field under elevated CO2. Annals of Botany 85:789-798.
Janssens I.A., Crookshanks M., Taylor G., Ceulemans R. (1998) Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings. Global Change Biology 4:871-878.
Jarvis P.G. European Forests and Global Change. The Likely Impacts of Rising CO2 and Temperature, Cambridge University Press, Cambridge, United Kingdom, 380 pp; 1998.
Jorns A., Hecht-Buchholz C. (1985) Aluminiuminduzierter Magnesium- und Calciummangel im Laborversuch bei Fichtensämlingen. Allgemeine Forstzeitschrift 46:1248-1252.
Kinsbursky R.S., Saltzman S. (1990) CO2-nitrification relationships in closed soil incubation vessels. Soil Biology and Biochemistry 22:571-572.
Laitat E., Chermanne B., Portier B. (2000) Biomass, carbon and nitrogen allocation in open top chambers under ambient and elevated CO2 and in a mixed forest stand. A tentative approach for scaling up from the experiments of Vielsalm. Forest Ecosystem Modelling, Upscaling and Remote Sensing , (eds Ceulemans RJM, Veroustraete V, Gond V, van Rensbergen JBHF), SPB, Academic Publishing bv, The Hague, The Netherlands; 33-59.
Maag M., Vinther F.P. (1996) Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology 4:5-14.
Norby R.J., Wullschleger S.D., Gunderson C.A., Johnson D.W., Ceulemans R. (1999) Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant, Cell and Environment 22:683-714.
O'Neill E.G. (1994) Responses of soil biota to elevated atmospheric carbon dioxide. Plant and Soil 165:55-65.
Pregitzer K.S., Zak D.R., Maziasz J., DeForest J., Curtis P.S., Lussenhop J. (2000) Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides. Ecological Applications 10:18-33.
Reuss J.O., Johnson D.W. (1986) Acid deposition and the acidification of soils and waters. Ecological Studies 59, (eds Billings WD, Golley F, Lange OL, Olson US, Remment H). Springer-Verlag, New York, 119 pp; .
Santruckova H., Simek M. (1994) Soil microorganisms at different CO2 and O2 tensions. Folia Microbiologia 39:225-230.
Santruckova H., Simek M. (1997) Effect of soil CO2 concentration on microbial biomass. Biology and Fertility of Soils 25:269-273.
SAS/STAT User's Guide, Version 6 , SAS Institute Inc. SAS Institute Inc, Cary, NC. 943 pp; 1989, 1-2.
Simek M., Cooper J.E., Picek T., Santruckova H. (2000) Denitrification in arable soils in relation to their physico-chemical properties and fertilization practice. Soil Biology and Biochemistry 32:101-110.
Smart D.R., Ritchie K., Stark J.M., Bugbee B. (1997) Evidence that elevated CO2 levels can indirectly increase rhizosphere denitrifier activity. Applied and Environmental Microbiology 63:4621-4624.
Sotomayor D., Rice C.W. (1999) Soil air carbon dioxide and nitrous oxide concentrations in profiles under tallgrass prairie and cultivation. Journal of Environmental Quality 28:784-793.
Tiedje J.M. (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of Anaerobic Microorganisms , (ed. Zehnder AJB), Wiley, New York; 179-244.
Tiedje J.M. (1994) Denitrifiers. Methods of Soil Analysis. Part 2-Microbiological and Biochemical Properties , (eds Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Wollum A), Soil Science Society of America, Madison; 985-1018.
Watson S.W., Bock E., Harms H., Koops H.P., Hooper A.B. (1989) Nitrifying bacteria. Bergey's Manual of Systematic Bacteriology , (eds Stayley JT, Bryant MP, Pfennig N, Holt JG), Williams and Wilkins, Baltimore, USA; 3:1808-1834.
Weissen F., Hambuckers A., Van Praag H.J., Remacle J. (1990) A decennial control of N-cycle in the Belgian Ardenne forest ecosystems. Plant and Soil 128:59-66.
Zak D.R., Pregitzer K.S., Curtis P.S., Teeri J.A., Fogel R., Randlett D.L. (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil 151:105-117.
Zak D.R., Pregitzer K.S., Curtis P.S., Vogel C.S., Holmes W.E., Lussenhop J. (2000) Atmospheric CO2, soil-N availability and allocation of biomass and nitrogen by Populus tremuloides. Ecological Applications 10:34-46.
Zak D.R., Pregitzer K.S., King J.S., Holmes W.E. (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: A review and hypothesis. New Phytologist 147:201-222.