Poulsen, J. R.; Nicholas School of the Environment, Duke University, Durham, NC, United States, Agence Nationale des Parcs Nationaux, Libreville, Gabon
Medjibe, V. P.; Nicholas School of the Environment, Duke University, Durham, NC, United States, Agence Nationale des Parcs Nationaux, Libreville, Gabon
White, L. J. T.; Agence Nationale des Parcs Nationaux, Libreville, Gabon, Institut de Recherche en Ecologie Tropicale, Libreville, Gabon, African Forest Ecology Group, School of Natural Sciences, University of Stirling, Stirling, United Kingdom
Miao, Z.; Nicholas School of the Environment, Duke University, Durham, NC, United States
Banak-Ngok, L.; Institut de Recherche en Ecologie Tropicale, Libreville, Gabon
Beirne, C.; Nicholas School of the Environment, Duke University, Durham, NC, United States
Clark, C. J.; Nicholas School of the Environment, Duke University, Durham, NC, United States, Agence Nationale des Parcs Nationaux, Libreville, Gabon
Cuni-Sanchez, A.; Department of Geography, University College London, London, United Kingdom
Disney, M.; Department of Geography, University College London, London, United Kingdom, NERC National Centre for Earth Observation, University of Leicester, Leicester, United Kingdom
Doucet, Jean-Louis ; Université de Liège - ULiège > Département GxABT > Laboratoire de Foresterie des régions trop. et subtropicales
Lee, M. E.; Nicholas School of the Environment, Duke University, Durham, NC, United States, Agence Nationale des Parcs Nationaux, Libreville, Gabon
Lewis, S. L.; Department of Geography, University College London, London, United Kingdom, School of Geography, University of Leeds, Leeds, United Kingdom
Mitchard, E.; School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom
Nuñez, C. L.; Nicholas School of the Environment, Duke University, Durham, NC, United States, German Centre for Integrative Biodiversity Research, Leipzig, Germany
Reitsma, J.; Bureau Waardenburg, Culemborg, Netherlands
Saatchi, S.; NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States, Institute of Environment and Sustainability, University of California, Los Angeles, CA, United States
Scott, C. T.; US Forest Service, SilvaCarbon Program, West Chester, PA, United States
Austin, K. G., Lee, M. E., Clark, C., Forester, B. R., Urban, D. L., White, L., … Poulsen, J. R. (2017). An assessment of high carbon stock and high conservation value approaches to sustainable oil palm cultivation in Gabon. Environmental Research Letters, 12, 014005. https://doi.org/10.1088/1748-9326/aa5437
Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J., Affum-Baffoe, K., … Lewis, S. L. (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21, 1179–1190. https://doi.org/10.1111/j.1466-8238.2012.00778.x
Baraloto, C., Rabaud, S., Molto, Q., Blanc, L., Fortunel, C., Hérault, B., … Fine, P. V. A. (2011). Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Global Change Biology, 17, 2677–2688. https://doi.org/10.1111/j.1365-2486.2011.02432.x
Barton, K. (2019). R Package ‘MuMIn’: Multi-model inference. https://cran.r-project.org/web/packages/MuMIn/index.html
Bastin, J.-F., Barbier, N., Réjou-Méchain, M., Fayolle, A., Gourlet-Fleury, S., Maniatis, D., … Bogaert, J. (2015). Seeing Central African forests through their largest trees. Scientific Reports, 5, 1–8. https://doi.org/10.1038/srep13156
Bastin, J.-F., Rutishauser, E., Kellner, J. R., Saatchi, S., Pélissier, R., Hérault, B., … Zebaze, D. (2018). Pan-tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 27(11), 1366–1383.
Bayol, N., Demarquez, B., Wasseige, C. D., Eba, R., Fisher, J., Nasi, R., … Vivien, C. (2012). Forest management and the timber sector in Central Africa. In C. de Wasseige, P. J. D. Marcken, N. Bayol, F. H. Hiol, P. Mayaux, & B. Desclée (Eds.), The forests of the Congo Basin: State of the forest 2010 (pp. 43–62). Brussels, Belgium: Publications Office of the European Union.
Bebber, D. P., & Butt, N. (2017). Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Scientific Reports, 7, 1–8. https://doi.org/10.1038/s41598-017-14467-w
Beirne, C., Miao, Z., Nuñez, C. L., Medjibe, V. P., Saatchi, S., White, L. J. T., & Poulsen, J. R. (2019). Landscape-level validation of allometric relationships for carbon stock estimation reveals bias driven by soil type. Ecological Applications, 29, e01987. https://doi.org/10.1002/eap.1987
Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., … Barlow, J. (2014). A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20, 3713–3726. https://doi.org/10.1111/gcb.12627
Born, C., Alvarez, N., McKey, D., Ossari, S., Wickings, E. J., Hossaert-McKey, M., & Chevallier, M.-H. (2011). Insights into the biogeographical history of the Lower Guinea Forest Domain: Evidence for the role of refugia in the intraspecific differentiation of Aucoumea klaineana. Molecular Ecology, 20, 131–142. https://doi.org/10.1111/j.1365-294X.2010.04919.x
Burton, M. E. H., Poulsen, J. R., Lee, M. E., Medjibe, V. P., Stewart, C. G., Venkataraman, A., & White, L. J. T. (2017). Reducing carbon emissions from forest conversion for oil palm agriculture in Gabon. Conservation Letters, 10, 297–307. https://doi.org/10.1111/conl.12265
Cade, B. S. (2015). Model averaging and muddled multimodel inferences. Ecology, 96, 2370–2382. https://doi.org/10.1890/14-1639.1
Carlson, B. S., Koerner, S. E., Medjibe, V. P., White, L. J. T., & Poulsen, J. R. (2017). Deadwood stocks increase with selective logging and large tree frequency in Gabon. Global Change Biology, 23, 1648–1660. https://doi.org/10.1111/gcb.13453
Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 409–420. https://doi.org/10.1098/rstb.2003.1425
Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., Steege, H. T., & Webb, C. O. (2014). Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecological Applications, 16, 2356–2367. https://doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177–3190. https://doi.org/10.1111/gcb.12629
Cuni-Sanchez, A., & Lindsell, J. A. (2017). The role of remnant trees in carbon sequestration, vegetation structure and tree diversity of early succession regrowing fallows in eastern Sierra Leone. African Journal of Ecology, 55, 188–197. https://doi.org/10.1111/aje.12340
FAO. (2002). Terrastat, global land resources GIS models and data- bases for poverty and food insecurity mapping. Rome, Italy: Food and Agricultural Organization of the United Nations.
Feintrenie, L. (2014). Agro-industrial plantations in Central Africa, risks and opportunities. Biodiversity and Conservation, 23, 1577–1589. https://doi.org/10.1007/s10531-014-0687-5
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., … Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012
Fonseca, W., Rey Benayas, J. M., & Alice, F. E. (2011). Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. Forest Ecology and Management, 262, 1400–1408. https://doi.org/10.1016/j.foreco.2011.06.036
Forêt Ressources Management. (2018). Vision stratégique et industrialisation de la filière bois dans les 6 pays du Bassin du Congo: Horizon 2030. Montpelier, France: Banque Africaine de Développement.
Funk, J. M., Aguilar-Amuchastegui, N., Baldwin-Cantello, W., Busch, J., Chuvasov, E., Evans, T., … van der Hoff, R. J. A. (2019). Securing the climate benefits of stable forests. Climate Policy, 19, 845–860. https://doi.org/10.1080/14693062.2019.1598838
Galipaud, M., Gillingham, M. A. F., & Dechaume-Moncharmont, F. X. (2017). A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods in Ecology and Evolution, 8, 1668–1678. https://doi.org/10.1111/2041-210X.12835
Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences USA, 107, 16732–16737. https://doi.org/10.1073/pnas.0910275107
High Carbon Stock Science Study (2015). The high Carbon stock science study overview report. Kuala Lumpur: Sustainable Palm Oil Manifesto Secretariat.
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978. https://doi.org/10.1002/joc.1276
IPCC 2008, (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories – A primer. In H. S. Eggleston, K. Miwa, N. Srivastava, & K. Tanabe (Eds.), Prepared by the National Greenhouse Gas Inventories Programme. Hayama, Japan: IGES.
Karsenty, A. (2016). The contemporary forest concessions in West and Central Africa: Chronicle of a foretold decline?, Forestry Policy and Institutions Working paper No. 34, Rome, Italy: Food and Agricultural Organization of the United Nations.
Lescuyer, G., Cerutti, P., Manguiengha, S. N., & bi Ndong, L. B. (2011). The domestic market for small-scale chainsaw milling in Cameroon: Present situation, opportunities and challenges. Bogor, Indonesia: Center for International Forestry Research. https://doi.org/10.17528/cifor/003421
Lewis, S. L., Edwards, D. P., & Galbraith, D. (2015). Increasing human dominance of tropical forests. Science, 349, 827–832. https://doi.org/10.1126/science.aaa9932
Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., … Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120295. https://doi.org/10.1098/rstb.2012.0295
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A., & Koch, A. (2019). Restoring natural forests is the best way to remove atmospheric carbon. Nature, 568, 25–28. https://doi.org/10.1038/d41586-019-01026-8
Lindenmayer, D. B., Laurance, W. F., & Franklin, J. F. (2012). Global decline in large old trees. Science, 338, 1305–1306. https://doi.org/10.1126/science.1231070
Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., … Vinceti, B. (2006). The regional variation of aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 12, 1107–1138. https://doi.org/10.1111/j.1365-2486.2006.01120.x
McMahon, S. M., Parker, G. G., & Miller, D. R. (2010). Evidence for a recent increase in forest growth. Proceedings of the National Academy of Sciences USA, 107, 3611–3615. https://doi.org/10.1073/pnas.0912376107
Medjibe, V. P., Putz, F. E., & Romero, C. (2013). Certified and uncertified logging concessions compared in Gabon: Changes in stand structure, tree species, and biomass. Environmental Management, 51, 524–540. https://doi.org/10.1007/s00267-012-0006-4
Meyer, V., Saatchi, S., Clark, D. B., Keller, M., Vincent, G., Ferraz, A., … Chave, J. (2018). Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes. Biogeosciences, 15, 3377–3390. https://doi.org/10.5194/bg-15-3377-2018
Ministère des eaux et forêts. (2014). Code Forestier de la République Gabonaise. Libreville, Gabon: Government of Gabon.
Ngomanda, A., Engone Obiang, N. L., Lebamba, J., Moundounga Mavouroulou, Q., Gomat, H., Mankou, G. S., … Picard, N. (2014). Site-specific versus pantropical allometric equations: Which option to estimate the biomass of a moist central African forest? Forest Ecology and Management, 312, 1–9. https://doi.org/10.1016/j.foreco.2013.10.029
Njomgang, R., Yemefack, M., Nounamo, L., Moukam, A., & Kotto-Same, J. (2011). Dynamics of shifting agricultural-systems and organic carbon sequestration in southern Cameroon. Tropicultura, 29, 176–182.
Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593–622. https://doi.org/10.1146/annurev-ecolsys-110512-135914
Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., … Rozendaal, D. M. A. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530, 211–214. https://doi.org/10.1038/nature16512
Poulsen, J. R., Koerner, S. E., Miao, Z., Medjibe, V. P., Banak, L. N., & White, L. J. T. (2017). Forest structure determines the abundance and distribution of large lianas in Gabon. Global Ecology and Biogeography, 26, 472–485. https://doi.org/10.1111/geb.12554
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., … Lloyd, J. (2012). Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9, 2203–2246. https://doi.org/10.5194/bg-9-2203-2012
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/
Rutishauser, E., Hérault, B., Baraloto, C., Blanc, L., Descroix, L., Sotta, E. D., … Sist, P. (2015). Rapid tree carbon stock recovery in managed Amazonian forests. Current Biology, 25, R787–R788. https://doi.org/10.1016/j.cub.2015.09.059
Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., … Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences USA, 108, 9899–9904. https://doi.org/10.1073/pnas.1019576108
Slik, J. W. F. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114–120. https://doi.org/10.1007/s00442-004-1635-y
Slik, J. W. F., Aiba, S.-I., Brearley, F. Q., Cannon, C. H., Forshed, O., Kitayama, K., … van Valkenburg, J. L. C. H. (2010). Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Global Ecology and Biogeography, 19, 50–60. https://doi.org/10.1111/j.1466-8238.2009.00489.x
Slik, J. W. F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261–1271. https://doi.org/10.1111/geb.12092
Stegen, J. C., Swenson, N. G., Enquist, B. J., White, E. P., Phillips, O. L., Jørgensen, P. M., … Núñez Vargas, P. (2011). Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20, 744–754. https://doi.org/10.1111/j.1466-8238.2010.00645.x
Suarez, D. R., Phillips, O. L., Rozendaal, D. M. A., Sy, V. D., Dávila, E. A., Teixeira, K. A., … Herold, M. (2019). Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 25, 3609–3624.
Sullivan, M. J. P., Lewis, S. L., Hubau, W., Qie, L., Baker, T. R., Banin, L. F., … Phillips, O. L. (2018). Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 9, 1179–1189. https://doi.org/10.1111/2041-210X.12962
Sullivan, M. J. P., Talbot, J., Lewis, S. L., Phillips, O. L., Qie, L., Begne, S. K., … Zemagho, L. (2017). Diversity and carbon storage across the tropical forest biome. Scientific Reports, 7, 1–12. https://doi.org/10.1038/srep39102
ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomao, R. P., Guevara, J. E., … Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science, 342, 1243092. https://doi.org/10.1126/science.1243092
Theobald, D. M., Stevens, D. L., White, D., Urquhart, N. S., Olsen, A. R., & Norman, J. B. (2007). Using GIS to generate spatially balanced random survey designs for natural resource applications. Environmental Management, 40, 134–146. https://doi.org/10.1007/s00267-005-0199-x
Thomas, S. C., & Martin, A. R. (2012). Carbon content of tree tissues: A synthesis. Forests, 3, 332–352. https://doi.org/10.3390/f3020332
Tyukavina, A., Hansen, M. C., Potapov, P., Parker, D., Okpa, C., Stehman, S. V., … Turubanova, S. (2018). Congo Basin forest loss dominated by increasing smallholder clearing. Science Advances, 4, eaat2993.
Van Nieuwstadt, M. G. L., & Sheil, D. (2005). Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. Journal of Ecology, 93, 191–201. https://doi.org/10.1111/j.1365-2745.2004.00954.x
World Resources Institute. (2017). Congo Basin forest atlases. Washington, D.C. https://www.wri.org/our-work/project/forest-atlases
Xu, L., Saatchi, S. S., Shapiro, A., Meyer, V., Ferraz, A., Yang, Y., … Ebuta, D. (2017). Spatial distribution of carbon stored in forests of the Democratic Republic of Congo. Scientific Reports, 7, 1–13.
Yang, Y., Saatchi, S., Xu, L., Yu, Y., Lefsky, M., White, L., … Myneni, R. (2016). Abiotic controls on macroscale variations of humid tropical forest height. Remote Sensing, 8, 1–18. https://doi.org/10.3390/rs8060494
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., … Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. https://doi.org/10.5061/dryad.234.
Zhu, K., Zhang, J., Niu, S., Chu, C., & Luo, Y. (2018). Limits to growth of forest biomass carbon sink under climate change. Nature Communications, 9, 2709. https://doi.org/10.1038/s41467-018-05132-5.