[en] Small objects floating on a fluid have a tendency to aggregate due to capillary forces. This effect has been used, with the help of a magnetic induction field, to assemble submillimeter metallic spheres into a variety of structures, whose shape and size can be tuned. Under time-varying fields, these assemblies can propel themselves due to a breaking of time reversal symmetry in their adopted shapes. In this article, we study the influence of an in-plane rotation of the magnetic field on these structures. Various rotational modes have been observed with different underlying mechanisms. The magnetic properties of the particles cause them to rotate individually. Dipole-dipole interactions in the assembly can cause the whole structure to align with the field. Finally, non-reciprocal deformations can power the rotation of the assembly. Symmetry plays an important role in the dynamics, as well as the frequency and amplitude of the applied field. Understanding the interplay of these effects is essential, both to explain previous observations and to develop new functions for these assemblies.
Disciplines :
Physics
Author, co-author :
Grosjean, Galien ; Université de Liège - ULiège > Département de physique > CESAM
Hubert, Maxime; Friedrich Alexander University Erlangen-Nürnberg > PULS Group, Institute for Theoretical Physics and Cluster of Excellence: Engineering of Advanced Materials
Collard, Ylona ; Université de Liège - ULiège > Département de physique > CESAM
Sukhov, Alexander; Helmholtz Institute Erlangen-Nürnberg for Renewable Energy
Harting, Jens; Helmholtz Institute Erlangen-Nürnberg for Renewable Energy
Smith, Ana-Suncana; Friedrich Alexander University Erlangen-Nürnberg > PULS Group, Institute for Theoretical Physics and Cluster of Excellence: Engineering of Advanced Materials
Vandewalle, Nicolas ; Université de Liège - ULiège > Département de physique > Physique statistique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
G. M. Whitesides B. Grzybowski Science 2002 295 2418 2421
G. M. Whitesides M. Boncheva Proc. Natl. Acad. Sci. U. S. A. 2002 99 4769 4774
J. Zhang Z. Sun B. Yang Curr. Opin. Colloid Interface Sci. 2009 14 103 114
K. Thorkelsson P. Bai T. Xu Nano Today 2015 10 48 66
M. A. Boles M. Engel D. V. Talapin Chem. Rev. 2016 116 11220 11289
Y. Dou B. Wang M. Jin Y. Yu G. Zhou L. Shui J. Micromech. Microeng. 2017 27 113002
A. Rida M. A. M. Gijs Anal. Chem. 2004 76 6239 6246
F. S. Majedi M. M. Hasani-Sadrabadi S. Hojjati Emami M. A. Shokrgozar J. J. VanDersarl E. Dashtimoghadam A. Bertsch P. Renaud Lab Chip 2013 13 204 207
L. Y. Wu D. Di Carlo L. P. Lee Biomed. Microdevices 2008 10 197 202
F. Martinez-Pedrero P. Tierno Phys. Rev. Appl. 2015 3 051003
S. E. Chung W. Park S. Shin S. A. Lee S. Kwon Nat. Mater. 2008 7 581
G. Grosjean G. Lagubeau A. Darras M. Hubert G. Lumay N. Vandewalle Sci. Rep. 2015 5 16035
S.-H. Kim S. Y. Lee S.-M. Yang G.-R. Yi NPG Asia Mater. 2011 3 25
J. B. Edel A. A. Kornyshev M. Urbakh ACS Nano 2013 7 9526 9532
N. Vandewalle L. Clermont D. Terwagne S. Dorbolo E. Mersch G. Lumay Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2012 85 041402
N. Vandewalle N. Obara G. Lumay Eur. Phys. J. E: Soft Matter Biol. Phys. 2013 36 1 6
M. Golosovsky Y. Saado D. Davidov Appl. Phys. Lett. 1999 75 4168 4170
W. Wen L. Zhang P. Sheng Phys. Rev. Lett. 2000 85 5464 5467
B. A. Grzybowski H. A. Stone G. M. Whitesides Nature 2000 405 1033 1036
M. Golosovsky Y. Saado D. Davidov Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2002 65 061405
P. A. Kralchevsky K. Nagayama Langmuir 1994 10 23 36
D. Vella L. Mahadevan Am. J. Phys. 2005 73 817 825
B. Ninham Adv. Colloid Interface Sci. 1999 83 1 17
G. Lumay N. Obara F. Weyer N. Vandewalle Soft Matter 2013 9 2420 2425
G. Grosjean M. Hubert N. Vandewalle Adv. Colloid Interface Sci. 2018 255 84 93
G. Grosjean M. Hubert G. Lagubeau N. Vandewalle Phys. Rev. E 2016 94 021101
J. Pande L. Merchant T. Krüger J. Harting A.-S. Smith New J. Phys. 2017 19 053024
A. Sukhov S. Ziegler Q. Xie O. Trosman J. Pande G. Grosjean M. Hubert N. Vandewalle A.-S. Smith J. Harting J. Chem. Phys.
unpublished
G. Grosjean M. Hubert Y. Collard S. Pillitteri N. Vandewalle Eur. Phys. J. E: Soft Matter Biol. Phys. 2018 41 137
A. Snezhko I. S. Aranson W.-K. Kwok Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2006 73 041306
A. Snezhko I. S. Aranson Nat. Mater. 2011 10 698 703
S. Nakata M. Hata Y. S. Ikura E. Heisler A. Awazu H. Kitahata H. Nishimori J. Phys. Chem. C 2013 117 24490 24495
N. Bassik B. T. Abebe D. H. Gracias Langmuir 2008 24 12158 12163
E. Bormashenko Y. Bormashenko R. Grynyov H. Aharoni G. Whyman B. P. Binks J. Phys. Chem. C 2015 119 9910 9915
D. Okawa S. J. Pastine A. Zettl J. M. Fréchet J. Am. Chem. Soc. 2009 131 5396 5398
R. Chinomona J. Lajeunesse W. H. Mitchell Y. Yao S. E. Spagnolie Soft Matter 2015 11 1828 1838
E. Lushi P. M. Vlahovska J. Nonlinear Sci. 2015 25 1111 1123
M. Hubert G. Grosjean Y.-E. Corbisier G. Lumay F. Weyer N. Obara N. Vandewalle J. Chem. Phys. 2019 151 124707
G. Lagubeau G. Grosjean A. Darras G. Lumay M. Hubert N. Vandewalle Phys. Rev. E 2016 93 053117
D. Vella Annu. Rev. Fluid Mech. 2015 47 115 135
E. M. Purcell Am. J. Phys. 1977 45 3 11
E. Lauga T. R. Powers Rep. Prog. Phys. 2009 72 096601
A. Maestro N. Bruot J. Kotar N. Uchida R. Golestanian P. Cicuta Commun. Phys. 2018 1 28
F. Meng D. Matsunaga J. Yeomans R. Golestanian Soft Matter 2019 15 3864 3871
J. Belardi N. Schorr O. Prucker J. Rühe Adv. Funct. Mater. 2011 21 3314 3320
J. M. den Toonder P. R. Onck Trends Biotechnol. 2013 31 85 91
M. Vilfan A. Potočnik B. Kavčič N. Osterman I. Poberaj A. Vilfan D. Babič Proc. Natl. Acad. Sci. U. S. A. 2010 107 1844 1847
G. Kokot M. Vilfan N. Osterman A. Vilfan B. Kavčič I. Poberaj D. Babič Biomicrofluidics 2011 5 034103
L. D. Landau E. Lifshitz Phys. Z. Sowjetunion 1935 8 153
T. L. Gilbert IEEE Trans. Magn. 2004 40 3443 3449
A. Vansteenkiste J. Leliaert M. Dvornik M. Helsen F. Garcia-Sanchez B. Van Waeyenberge AIP Adv. 2014 4 107133
M. Beleggia M. De Graef Y. Millev J. Phys. D: Appl. Phys. 2006 39 891
J. M. Coey, Magnetism and magnetic materials, Cambridge university press, 2010
R. Golestanian A. Ajdari Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2008 77 036308
J. R. Blake A. T. Chwang J. Eng. Math. 1974 8 23 29
P. Mazur W. van Saarloos Phys. A 1982 115 21
A. Dörr S. Hardt H. Masoud H. A. Stone J. Fluid Mech. 2016 790 607 618
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.