Article (Scientific journals)
Magnetically powered metachronal waves induce locomotion in self-assemblies
Collard, Ylona; Grosjean, Galien; Vandewalle, Nicolas
2020In Communications Physics
Peer Reviewed verified by ORBi
 

Files


Full Text
s42005-020-0380-9.pdf
Publisher postprint (1.91 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Interface; Microswimmer; Capillarity; Magnetocapillary; Self-assembly; Biomimetics
Abstract :
[en] When tiny soft ferromagnetic particles are placed along a liquid interface and exposed to a vertical magnetic field, the balance between capillary attraction and magnetic repulsion leads to self-organization into well-defined patterns. Here, we demonstrate experimentally that precessing magnetic fields induce metachronal waves on the periphery of these assemblies, similar to the ones observed in ciliates and some arthropods. The outermost layer of particles behaves like an array of cilia or legs whose sequential movement causes a net and controllable locomotion. This bioinspired many-particle swimming strategy is effective even at low Reynolds number, using only spatially uniform fields to generate the waves.
Disciplines :
Physics
Author, co-author :
Collard, Ylona ;  Université de Liège - ULiège > Département de physique > Physique statistique
Grosjean, Galien ;  Université de Liège - ULiège > Département de physique > CESAM
Vandewalle, Nicolas  ;  Université de Liège - ULiège > Département de physique > Physique statistique
Language :
English
Title :
Magnetically powered metachronal waves induce locomotion in self-assemblies
Publication date :
2020
Journal title :
Communications Physics
eISSN :
2399-3650
Publisher :
Nature Publishing Group, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
PDR T.0129.18
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 24 September 2020

Statistics


Number of views
97 (11 by ULiège)
Number of downloads
52 (6 by ULiège)

Scopus citations®
 
19
Scopus citations®
without self-citations
14
OpenCitations
 
10
OpenAlex citations
 
20

Bibliography


Similar publications



Contact ORBi