[en] In a flash sintering process, a straightforward way to control the current uniformity through the sample is contacting the sample to the electrodes with platinum paste. This method is however costly for large-scale applications. We show that the in-situ phase resolved partial discharge technique is suitable to assess the quality of the contact between Pt electrodes and uncoated 3YSZ samples. In the temperature range 250−500 °C and for 50 Hz electric fields ramped up to 3.2 kV/cm, a sudden increase of the partial discharge current well before any curvature change of the 50 Hz current is found to be a signature of a defective electrical contact. Changes in the partial discharge amplitude are observed around the current rush. The surface microstructure of the samples subjected to partial discharges shows characteristics similar to those observed during dielectric breakdown, although the applied electric field is well below their typical dielectric strength.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège Belgian Ceramic Research Centre
Fagnard, Jean-François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Gajdowski, Caroline; Belgian Ceramic Research Centre
Boilet, Laurent; Belgian Ceramic Research Centre
Henrotte, François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Vertruyen, Bénédicte ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Vanderbemden, Philippe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
Use of partial discharge patterns to assess the quality of sample/electrode contacts in flash sintering
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Cologna, M., Rashkova, B., Raj, R., Flash sintering of nanograin zirconia in <5 s at 850°C. J. Am. Ceram. Soc. 93 (2010), 3556–3559, 10.1111/j.1551-2916.2010.04089.x.
Cologna, M., Prette, A.L.G., Raj, R., Flash-sintering of cubic yttria-stabilized zirconia at 750°C for possible use in SOFC manufacturing. J. Am. Ceram. Soc. 94 (2011), 316–319, 10.1016/10.1111/j.1551-2916.2010.04267.x.
Prette, A.L.G., Cologna, M., Sglavo, V., Raj, R., Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications. J. Power Sources 196 (2011), 2061–2065, 10.1016/j.jpowsour.2010.10.036.
Cologna, M., Francis, J.S.C., Raj, R., Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping. J. Eur. Ceram. Soc. 31 (2011), 2827–2837, 10.1016/j.jeurceramsoc.2011.07.004.
Zapata-Solvas, E., Bonilla, S., Wilshaw, P.R., Todd, R.I., Preliminary investigation of flash sintering of SiC. J. Eur. Ceram. Soc. 33 (2013), 2811–2816, 10.1016/j.jeurceramsoc.2013.04.023.
Yoshida, H., Sakka, Y., Yamamoto, T., Lebrun, J.-M., Raj, R., Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering. J. Eur. Ceram. Soc. 34 (2014), 991–1000, 10.1016/j.jeurceramsoc.2013.10.031.
Muccillo, R., Muccillo, E.N.S., Electric field-assisted flash sintering of tin dioxide. J. Eur. Ceram. Soc. 34 (2014), 915–923, 10.1016/j.jeurceramsoc.2013.09.017.
Jha, S.K., Raj, R., The effect of electric field on sintering and electrical conductivity of titania. J. Am. Ceram. Soc. 97 (2014), 527–534, 10.1111/jace.12682.
Schmerbauch, C., Gonzalez-Julian, J., Röder, R., Ronning, C., Guillon, O., Flash sintering of nanocrystalline zinc oxide and its influence on microstructure and defect formation. J. Am. Ceram. Soc. 97 (2014), 1728–1735, 10.1111/jace.12972.
Gaur, A., Sglavo, V.M., Densification of La0.6Sr0.4Co0.2Fe0.8O3 ceramic by flash sintering at temperature less than 100°C. J. Mater. Sci. 49 (2014), 6321–6332, 10.1007/s10853-014-8357-2.
Perez-Maqueda, L.A., Gil-Gonzalez, E., Raj, R., Flash sintering of highly insulating nanostructured phase-pure BiFeO3. J. Am. Ceram. Soc. 100 (2017), 3365–3369 https://doi.org/3365-3369, 10.1111/jace.14990.
Kok, D., Jha, S.K., Raj, R., Mecartney, M.L., Flash sintering of a three‐phase alumina, spinel, and yttria‐stabilized zirconia composite. J. Am. Ceram. Soc. 100 (2017), 3262–3268, 10.1111/jace.14818.
Chaim, R., Chevallier, G., Weibel, A., Estournès, C., Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review. J. Mater. Sci., 53, 2018, 3087, 10.1007/s10853-017-1761-7.
Su, X., Bai, G., Jia, Y., Wang, Z., Wu, W., Yan, X., Ai, T., Zhao, P., Zhou, L., Flash sintering of lead zirconate titanate (PZT) ceramics: influence of electrical field and current limit on densification and grain growth. J. Eur. Ceram. Soc. 38 (2018), 3489–3497, 10.1016/j.jeurceramsoc.2018.04.007.
Frasnelli, M., Sglavo, V.M., Flash sintering of tricalcium phosphate (TCP) bioceramics. J. Eur. Ceram. Soc. 38 (2018), 279–285, 10.1016/j.jeurceramsoc.2017.08.004.
Spiridigliozzi, L., Pinter, L., Biesuz, M., Dell'Agli, G., Accardo, G., Sglavo, M.V., Gd/Sm-Pr Co-doped Ceria: a first report of the precipitation method effect on flash sintering. Materials, 12, 2019, 1218, 10.3390/ma12081218.
Taghaddos, E., Charalambous, H., Tsakalakos, T., Safari, A., Electromechanical properties of flash sintered BNT-based piezoelectric ceramic. J. Eur. Ceram. Soc. 39 (2019), 2882–2888, 10.1016/j.jeurceramsoc.2019.03.050.
Soleimany, M., Paydar, M.H., Investigation on flash sintering of BaZr0.1Ce0.7Y0.2O3-δ compound; using nickel wire as electrode material. Ceram. Int. 46 (2020), 2128–2138, 10.1016/j.ceramint.2019.09.196.
Sohrabi, D., Heidary, B., Lanagan, M., Randall, C.A., Contrasting energy efficiency in various ceramic sintering processes. J. Eur. Ceram. Soc. 38 (2018), 1018–1029, 10.1016/j.jeurceramsoc.2017.10.015.
Ibn-Mohammed, T., Randall, C.A., Mustapha, K.B., Guo, J., Walker, J., Berbano, S., Koh, S.C.L., Wang, D., Sinclair, D.C., Reaney, I.M., Decarbonising ceramic manufacturing: a techno-economic analysis of energy efficient sintering technologies in the functional materials sector. J. Eur. Ceram. Soc. 39 (2019), 5213–5235, 10.1016/j.jeurceramsoc.2019.08.011.
Biesuz, M., Sglavo, V.M., Flash sintering of ceramics. J. Eur. Ceram. Soc. 39 (2019), 115–143, 10.1016/j.jeurceramsoc.2018.08.048.
Ren, K., Xia, J., Wang, Y., Grain growth kinetics of 3 mol. % yttria-stabilized zirconia during flash sintering. J. Eur. Ceram. Soc. 39 (2019), 1366–1373, 10.1016/j.jeurceramsoc.2018.11.032.
Kumar, M.K., Yadav, D., Lebrun, J.-M., Raj, R., Flash sintering with current rate: a different approach. J. Am. Ceram. Soc. 102 (2019), 823–835, 10.1111/jace.16037.
Christian, K.H., Charalambous, H., Jha, S.K., Tsakalakos, T., Current-ramp assisted sintering of 3YSZ: electrochemical and microstructural comparison to flash and thermal sintering. J. Eur. Ceram. Soc. 40 (2019), 436–443, 10.1016/j.jeurceramsoc.2019.09.036.
Campos, J.V., Lavagnini, I.R., de Sousa, R.V., Ferreira, J.A., de Jesus Agnolon Pallone, E.M., Development of an instrumented and automated flash sintering setup for enhanced process monitoring and parameter control. J. Eur. Ceram. Soc. 39 (2019), 531–538, 10.1016/j.jeurceramsoc.2018.09.002.
IEC 60270, High Voltage Test Techniques. Partial Discharge Measurements. 2015.
Korobeynikov, S.M., Ovsyannikov, A.G., Ridel, A.V., Karpov, D.I., Study of partial discharges in bubbles and microsphere in transformer oil. J. Phys. Conf. Ser., 1128, 2018, 012118, 10.1088/1742-6596/1128/1/012118.
Wetzer, J.M., Detecting voids in glass-bead devices with partial discharges induced by external fields. IEEE 1997 Annual Report Conference on Electrical Insulation and Dielectric Phenomena 2 (1997), 521–524, 10.1109/CEIDP.1997.641125.
Hori, T., Yanaze, N., Kozako, M., Hikita, M., Wada, J., Okabe, S., Partial discharge characteristics of epoxy composite with micro-meter size hollow glass particles. IEEE Conference on Electrical Insulation and Dielectric Phenomena, 2015, 366–369, 10.1109/CEIDP.2015.7352113.
Kannan, M., Sreejaya, P., Partial discharge detection in solid dielectrics. Int. J. Sci. Eng. Res. 4 (2013), 1–6.
Theodosiou, K., Agoris, D., Gialas, I., Vitellas, I., Measurements of partial discharges and power losses in pet films in high voltage AC fields. J. Electr. Eng. 58 (2007), 250–256.
Shin, B.-C., Kim, S.-C., Nahm, C.-W., Jang, S.-J., Nondestructive testing of ceramic capacitors by partial discharge method. Mater. Lett. 50 (2001), 82–86, 10.1016/S0167-577X(00)00420-1.
Paoletti, G.J., Golubev, A., Partial discharge theory and technologies related to medium-voltage electrical equipment. IEEE Trans. Ind. Appl. 37 (2001), 90–103, 10.1109/28.903131.
Kane, C., Golubev, A., Advantages of continuous monitoring of partial discharges in rotating equipment and switchgear. Conference Record of the 2003 Annual Pulp and Paper Industry Technical Conference, 2003, 117–122 https://doi.org/ 10.1109/PAPCON.2003.1216907.
Nikjoo, R., Taylor, N., Edin, H., Effect of high voltage impulses on partial discharge characteristics of oil-impregnated paper for online diagnostics. IEEE International Power Modulator and High Voltage Conference, 2016, 151–156, 10.1109/IPMHVC.2016.8012807.
Bayer, C.F., Waltrich, U., Soueidan, A., Baer, E., Schletz, A., Partial discharges in ceramic substrates - correlation of electric field strength simulations with phase resolved partial discharge measurements. International Conference on Electronics Packaging, 2016, 530–535, 10.1109/ICEP.2016.7486884.
Vu, T.A.T., Augé, J., Lesaint, O., Do, M.T., Partial discharges in aluminium nitrite ceramic substrates. 10th IEEE International Conference on Solid Dielectrics, 2010, 1–4, 10.1109/ICSD.2010.5568137.
Hang, T., Glaum, J., Phung, T., Hoffman, M., Investigation of partial discharge and fracture strength in piezoelectric ceramics. J. Am. Ceram. Soc. 97 (2014), 1905–1911, 10.1111/jace.12875.
Hang, T., Glaum, J., Genenko, Y.A., Phung, T., Hoffman, M., Investigation of partial discharge in piezoelectric ceramics. Acta Mater. 102 (2016), 284–291, 10.1016/j.actamat.2015.09.031.
https://pdix.com/.
Dular, P., Geuzaine, C., Henrotte, F., Legros, W., A general environment for the treatment of discrete problems and its application to the finite element method. IEEE Trans. Magn. 34 (1998), 3395–3398, 10.1109/20.717799.
Ramamoorthy, R., Sundararaman, D., Ramasamy, S., Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs. Solid State Ion. 123 (1999), 271–278, 10.1016/S0167-2738(99)00103-4.
Todd, R.I., Zapata-Solvas, E., Bonilla, R.S., Sneddon, T., Wilshaw, P.R., Electrical characteristics of flash sintering: thermal runaway of Joule heating. J. Eur. Ceram. Soc. 35 (2015), 1865–1877, 10.1016/j.jeurceramsoc.2014.12.022.
Badwal, S.P.S., Grain boundary resistivity in zirconia-based materials: effect of sintering temperatures and impurities. Solid State Ionic s 76 (1995), 67–80, 10.1016/0167-2738(94)00236-L.
Neusel, C., Jelitto, H., Schneider, G.A., Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown. J. Appl. Phys., 117, 2015, 154902, 10.1063/1.4917208.
Janek, J., Korte, C., Electrochemical blackening of yttria-stabilized zirconia – morphological instability of the moving reaction front. Solid State Ion. 116 (1999), 181–195, 10.1016/S0167-2738(98)00415-9.
Prado, M.O., Biesuz, M., Frasnelli, M., Benedetto, F.E., Sglavo, V.M., Viscous flow flash sintering of porous silica glass. J. Non. Solids 476 (2017), 60–66, 10.1016/j.jnoncrysol.2017.09.024.
Biesuz, M., Pinter, L., Saunders, T., Reece, M., Binner, J., Sglavo, V.M., Grasso, S., Investigation of electrochemical, optical and thermal effects during flash sintering of 8YSZ. Materials 11 (2018), 1214–1228, 10.3390/ma11071214.
Biesuz, M., Luchi, P., Quaranta, A., Sglavo, V.M., Theoretical and phenomenological analogies between flash sintering and dielectric breakdown in α-alumina. J. Appl. Phys., 120, 2016, 145107, 10.1063/1.4964811.
Shi, R., Pu, Y., Ji, J., Li, J., Guo, X., Wang, W., Yang, M., Correlation between flash sintering and dielectric breakdown behavior in donor-doped barium titanate ceramics. Ceram. Int. 46 (2020), 12846–12851, 10.1016/j.ceramint.2020.02.055.
Liu, J., Li, X., Wang, X., Huang, R., Jia, Z., Alternating current field flash sintering 99% relative density ZnO ceramics at room temperature. Scr. Mater. 176 (2020), 28–31, 10.1016/s.scriptamat.2019.09.026.
Jongprateep, O., Petrovsky, V., Dogan, F., Effects of yttria concentration and microstructure on electric breakdown of yttria stabilized zirconia. J. Metals Mater. Miner. 18 (2008), 9–14.
Owate, I.O., Freer, R., Ac breakdown characteristics of ceramic materials. J. Appl. Phys. 72 (1992), 2418–2422, 10.1063/1.351586.
Holland, T.B., Anselmi-Tamburini, U., Quach, D.V., Tran, T.B., Mukherjee, A.K., Local field strengths during early stage field assisted sintering (FAST) of dielectric materials. J. Eur. Ceram. Soc. 32 (2012), 3659–3666, 10.1016/j.jeurceramsoc.2012.03.012.
Fuertes, V., Cabrera, M.J., Seores, J., Muñoz, D., Fernández, J.F., Enríquez, E., Microstructural study of dielectric breakdown in glass-ceramics insulators. J. Eur. Ceram. Soc. 39 (2019), 376–383, 10.1016/j.jeurceramsoc.2018.08.044.
Neusel, C., Jelitto, H., Schmidt, D., Janssen, R., Felten, F., Schneider, G.A., Dielectric breakdown of alumina single crystals. J. Eur. Ceram. Soc. 32 (2012), 1053–1057, 10.1016/j.jeurceramsoc.2011.11.013.
Steil, M.C., Marinha, D., Aman, Y., Gomes, J.R.C., Kleitz, M., From conventional ac flash-sintering of YSZ to hyper-flash and double flash. J. Eur. Ceram. Soc. 33 (2013), 2093–2101, 10.1016/j.jeurceramsoc.2013.03.019.
Yoshida, H., Uehashi, A., Tokunaga, T., Sasaki, K., Yamamoto, T., Formation of grain boundary second phase in BaTiO3 polycrystal under a high DC electric field at elevated temperatures. J. Ceram. Soc. Jpn. 124 (2016), 388–392, 10.2109/jcersj2.15259.
Ojaimi, C.L., Ferreira, J.A., Chinelatto, A.L., Chinelatto, A.S.A., de Jesus Agnolon Pallone, E.M., Microstructural analysis of ZrO2/Al2O3 composite: flash and conventional sintering. Ceram. Int. 46 (2020), 2473–2480, 10.1016/j.ceramint.2019.09.241.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.