Article (Scientific journals)
Monitoring coefficient of variation using one-sided run rules control charts in the presence of measurement errors
Tran, Phuong Hanh; Heuchenne, Cédric; Nguyen, Huu Du et al.
2021In Journal of Applied Statistics, 48 (12), p. 2178- 2204
Peer Reviewed verified by ORBi
 

Files


Full Text
paper_JAS_7June2020.pdf
Author preprint (563.88 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Run rules chart; Markov chain; coefficient of variation; measurement errors; anomaly detection
Abstract :
[en] We investigate, in this paper, the effect of the measurement error (ME) on the performance of Run Rules control charts monitoring the coefficient of variation (CV) squared. The previous Run Rules CV chart in the literature is improved slightly by monitoring the CV squared using two one-sided Run Rules charts instead of monitoring the CV itself using a two-sided chart. The numerical results show that this improvement gives better performance in detecting process shifts. Moreover, we will show through simulation that the precision and accuracy errors do have a negative effect on the performance of the proposed Run Rules charts. We also find out that taking multiple measurements per item is not an effective way to reduce these negative effects. The proposed Run Rules control charts can be applied in the anomaly detection area.
Disciplines :
Quantitative methods in economics & management
Author, co-author :
Tran, Phuong Hanh  ;  Université de Liège - ULiège > HEC Recherche
Heuchenne, Cédric ;  Université de Liège - ULiège > HEC Liège : UER > UER Opérations: Statistique appl. à la gest. et à l'économie
Nguyen, Huu Du
Marie, Hélène
Language :
English
Title :
Monitoring coefficient of variation using one-sided run rules control charts in the presence of measurement errors
Publication date :
2021
Journal title :
Journal of Applied Statistics
ISSN :
0266-4763
eISSN :
1360-0532
Publisher :
Routledge, United Kingdom
Volume :
48
Issue :
12
Pages :
2178- 2204
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 09 September 2020

Statistics


Number of views
92 (19 by ULiège)
Number of downloads
6 (6 by ULiège)

Scopus citations®
 
5
Scopus citations®
without self-citations
5
OpenCitations
 
6
OpenAlex citations
 
11

Bibliography


Similar publications



Contact ORBi