[en] The size distribution of space debris constitutes an important input to risk analysis for current and future space missions. In preparation for future observations with the zenith-pointing 4-m International Liquid Mirror Telescope (ILMT), the 1.3-m Devasthal Fast Optical Telescope (DFOT) was used to gain experience with zenith-pointing observations and, serendipitously, to detect, identify and characterize orbital debris. Observational data were acquired on 11 nights in May 2015 using a 2048 X 2048-pixel CCD detector operating in time-delay integration mode. Thirteen debris streaks were detected, mostly during dawn and twilight. All were identified by correlation with available two-line element sets. By modeling each of the objects as a diffuse-specular Lambertian sphere with an albedo 0.175, their effective diameters were estimated from the observed apparent magnitudes, altitudes, velocities and solar phase angles. Seven objects were found to be in low Earth orbits and five in mid-Earth or geo-transfer orbits. The apparent Gaia magnitudes of the identified objects range from 5.6 to 12.0 and their estimated effective diameters from 0.8 to 7.6 m. The detection size limit of DFOT is found to be 50 cm for objects orbiting at an altitude of 1000 km. Images from the future ILMT photometric survey are expected to provide detections of space debris having diameters as small as 5 cm at this altitude.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Pradhan, Bikram ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > PSILab
Hickson, Paul; University of British Columbia - UBC
Surdej, Jean ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Language :
English
Title :
Serendipitous detection and size estimation of space debris using a survey zenith-pointing telescope
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Zhang, B., Wang, Z., Zhang, Y., Collision Risk Investigation for an Operational Spacecraft Caused by Space Debris. 2017, Cambridge University Press, Cambridge, UK, 10.1007/s10509-017-3041-z.
Schaub, H., Jasper, L.E.Z., Anderson, P.V., McKnight, D.S., Cost and risk assessment for spacecraft operation decisions caused by the space debris environment. Acta Astronaut. 113 (2015), 66–79, 10.1016/j.actaastro.2015.03.028.
Chobotov, V.A., Herman, D.E., Johnson, C.G., Collision and debris hazard assessment for a low-Earth-orbit space constellation. J. Spacecr. Rocket. 34 (1997), 233–238, 10.2514/2.3198.
Mehrholz, D., Leushacke, F.W., Jehn, R., Klinkrad, H., Landgraf, M., Detecting, tracking and imaging space debris. ESA Bull. 109 (2002), 128–134.
Lederer, S., Cowardin, H., Buckalew, B., Frith, J., Hickson, P., Pace, L., Matney, M., Anz-Meador, P., Seitzer, P., Stansbery, E., Glesne, T., NASA's orbital debris optical and IR ground-based observing program: utilizing the MCAT, UKIRT, and Magellan telescopes. Advanced Maui Optical and Space Surveillance Technologies Conference, 2016, 12.
Xu, X., Xiong, Y., A method for calculating collision probability between space objects. Res. Astron. Astrophys., 14, 2013, 11, 10.1088/1674-4527/14/5/009.
Mulrooney, M., Matney, M., Derivation and application of a global albedo yielding an optical brightness to physical size transformation free of systematic errors. Advanced Maui Optical and Space Surveillance Technologies Conference, 2007, E81.
Mulrooney, M., Matney, M., A new bond albedo for performing orbital debris brightness to size transformations. 59th International Astronautical Congress, 2008 Paper ID: 343.
Potter, A.E., Mulrooney, M., Liquid metal mirror for optical measurements of orbital debris. Adv. Space Res. 19 (1997), 213–219, 10.1016/S0273-1177(97)00003-3.
Schildknecht, T., Ploner, M., Hugentobler, U., The search for debris in GEO. Adv. Space Res. 28 (2001), 1291–1299, 10.1016/S0273-1177(01)00399-4.
Surdej, J., Absil, O., Bartczak, P., Borra, E., Chisogne, J.-P., Claeskens, J.-F., Collin, B., De Becker, M., Defrère, D., Denis, S., Flebus, C., Garcet, O., Gloesener, P., Jean, C., Lampens, P., Libbrecht, C., Magette, A., Manfroid, J., Mawet, D., Nakos, T., Ninane, N., Poels, J., Pospieszalska, A., Riaud, P., Sprimont, P.-G., Swings, J.-P., The 4m international liquid mirror telescope (ILMT). Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6267, 2006, 626704, 10.1117/12.671695.
Surdej, J., Hickson, P., Swings, J.-P., Habraken, S., Akunov, T., Bartczak, P., Chand, H., Becker, M., Delchambre, L., Finet, F., Kumar, B., Pandey, A., Pospieszalska, A., Pradhan, B., Sagar, R., Wertz, O., Cat, P., Denis, S., J.D, V., M.K, J., P, L., N, N., Tortolani, J.-M., The 4-m international liquid mirror telescope. Bull. Soc. R. Sci. Liege 87 (2018), 68–79.
Borra, E.F., Beauchemin, M., Lalande, R., Liquid mirror telescopes - observations with a 1 meter diameter prototype and scaling-up considerations. Astrophys. J. 297 (1985), 846–851, 10.1086/163581.
Borra, E.F., Content, R., Girard, L., Szapiel, S., Tremblay, L.M., Boily, E., Liquid mirrors - optical shop tests and contributions to the technology. Astrophys. J. 393 (1992), 829–847, 10.1086/171550.
R. Sagar, B. Kumar, A. Omar, Optical Astronomical Facilities at Nainital, India, ArXiv e-prints (Mar. 2013). arXiv:1304.0235.
McGraw, J.T., Angel, J.R.P., Sargent, T.A., A charge-coupled device/CCD/transit-telescope survey for galactic and extragalactic variability and polarization. Elliott, D.A., (eds.) Conference on Applications of Digital Image Processing to Astronomy, Vol. 264 of Proc. Society of Photo-Optical Instrumentation Engineers (SPIE), 1980, 20–28, 10.1117/12.959777.
Wright, J.F., Mackay, C.D., The cambridge charge-coupled device/CCD/system. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 290 of Proc. Society of Photo-Optical Instrumentation Engineers (SPIE), 1981, 160, 10.1117/12.965855.
Gunn, J.E., Carr, M., Rockosi, C., Sekiguchi, M., Berry, K., Elms, B., de Haas, E., Ivezić, Ž., Knapp, G., Lupton, R., Pauls, G., Simcoe, R., Hirsch, R., Sanford, D., Wang, S., York, D., Harris, F., Annis, J., Bartozek, L., Boroski, W., Bakken, J., Haldeman, M., Kent, S., Holm, S., Holmgren, D., Petravick, D., Prosapio, A., Rechenmacher, R., Doi, M., Fukugita, M., Shimasaku, K., Okada, N., Hull, C., Siegmund, W., Mannery, E., Blouke, M., Heidtman, D., Schneider, D., Lucinio, R., Brinkman, J., The sloan digital sky survey photometric camera. Astron. J. 116 (1998), 3040–3081, 10.1086/300645.
Bertin, E., Arnouts, S., SExtractor: software for source extraction. Astron. Astrophys. Suppl. 117 (1996), 393–404, 10.1051/aas:1996164.
Gaia Collaboration Brown, A.G.A., Vallenari, A., Prusti, T., de Bruijne, J.H.J., Mignard, F., Drimmel, R., Babusiaux, C., Bailer-Jones, C.A.L., Bastian, U., et al. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys., 595, 2016, 10.1051/0004-6361/201629512 A2.
Gaia Collaboration Prusti, T., de Bruijne, J.H.J., Brown, A.G.A., Vallenari, A., Babusiaux, C., Bailer-Jones, C.A.L., Bastian, U., Biermann, M., Evans, D.W., et al. The Gaia mission. Astron. Astrophys., 595, 2016, A1, 10.1051/0004-6361/201629272.
U.S. Air Force Space Command, space situational awareness information https://www.space-track.org/. (Accessed 19 December 2018)
Hoots, F.R., Roehrich, R.L., Spacetrack report #3: models for propagation of the NORAD element sets. U.S. Air Force Aerospace Defence Command, Colorado Springs, CO, 1980.
Vallado, D.A., Crawford, P., Hujsak, R., Kelso, T.S., Revisiting spacetrack report #3. American Institute of Aeronautics and Astronautics, vols. 2006–6753, 2006, 1–88.
Hejduk, M., Specular and diffuse components in spherical satellite photometric modeling. Advanced Maui Optical and Space Surveillance Technologies Conference, 2011, E15.
Jordi, C., Gebran, M., Carrasco, J.M., de Bruijne, J., Voss, H., Fabricius, C., Knude, J., Vallenari, A., Kohley, R., Mora, A., Gaia broad band photometry. Astron. Astrophys., 523, 2010, A48, 10.1051/0004-6361/201015441.
DISCOS (Database and Information System Characterising Objects in Space), reference for launch information, object registration details, launch vehicle descriptions, as well as spacecraft information, https://discosweb.esoc.esa.int/, accessed: 19 December 2018.
Flohrer, T., Lemmens, S., Bastida Virgili, B., Krag, H., Klinkrad, H., Parrilla, E., Sanchez, N., Oliveira, J., Pina, F., DISCOS- current status and future developments. 6th European Conference on Space Debris, vol. 723, 2013, ESA Special Publication, 38.
A. Zak, RussianSpaceWeb.com, news and history of astronautics in the former ussr http://www.russianspaceweb.com/araks.html. (Accessed 19 December 2018)
B. Kumar, J. Shreekar, Technical parameters of the 1.3m devasthal optical telescope observatory https://www.aries.res.in/1.3m/telSpecs-ver4.pdf. (Accessed 19 December 2018)
I. Santa Barbara Instrument Group, Operating manual research camera models: Stl-1001e, stl-1301e, stl-4020m, stl-6303e and stl-11000m http://diffractionlimited.com/wp-content/uploads/2016/03/ST-L-Operating-Manual.pdf.
Kumar, B., Pandey, K.L., Pandey, S.B., Hickson, P., Borra, E.F., Anupama, G.C., Surdej, J., The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies. Mon. Not. R. Astron. Soc. 476 (2018), 2075–2085, 10.1093/mnras/sty298 arXiv:1802.00198.
Williams, J., G.A., M., An analysis of satellite optical characteristics data. Planet. Space Sci. 14:9 (1966), 839–847, 10.1016/0032-0633(66)90090-0.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.