Lambert, P.; Seigneur, F.; Koelemeijer, S.; Jacot, J. A case study of surface tension gripping: the watch bearing. J. Micromech. Microeng. 2006, 16, 1267-1276, 10.1088/0960-1317/16/7/021
Arutinov, G.; Mastrangeli, M.; van Heck, G.; Lambert, P.; den Toonder, J. M. J.; Dietzel, A.; Smits, E. C. P. Capillary gripping and self-alignment: A route toward autonomous heterogeneous assembly. IEEE Trans. Robot 2015, 31, 1033-1043, 10.1109/TRO.2015.2452775
Mastrangeli, M. The Fluid Joint: The Soft Spot of Micro-and Nanosystems. Adv. Mater. 2015, 27, 4254-4272, 10.1002/adma.201501260
Hagberg, J.; Pudas, M.; Leppävuori, S.; Elsey, K.; Logan, A. Gravure offset printing development for fine line thick film circuits. Microelectron. Int. 2001, 18, 32-35, 10.1108/13565360110405875
Kopola, P.; Aernouts, T.; Guillerez, S.; Jin, H.; Tuomikoski, M.; Maaninen, A.; Hast, J. High Efficient Plastic Solar Cells Fabricated with a High-through Put Gravure Printing Method. Sol. Energy Mater. Sol. Cells 2010, 94, 1673-1680, 10.1016/j.solmat.2010.05.027
Hornbaker, D.; Albert, R.; Albert, I.; Barabasi, A.; Schiffer, P. What keeps sandcastles standing?. Nature 1997, 387, 765-765, 10.1038/42831
Wang, J.; Gallo, E.; Fraņcois, B.; Gabrieli, F.; Lambert, P. Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technol. 2017, 305, 89-98, 10.1016/j.powtec.2016.09.060
Dirks, J. H.; Federle, W. Fluid-based adhesion in insects-principles and challenges. Soft Matter 2011, 7, 11047-11053, 10.1039/c1sm06269g
Gernay, S. M.; Federle, W.; Lambert, P.; Gilet, T. Elasto-capillarity in insect fibrillar adhesion. J. R. Soc., Interface 2016, 13, 20160371, 10.1098/rsif.2016.0371
Gernay, S. M.; Labousse, S.; Lambert, P.; Compère, P.; Gilet, T. Multi-scale tarsal adhesion kinematics of freely-walking dock beetles. J. R. Soc., Interface 2017, 14, 20170493, 10.1098/rsif.2017.0493
Gilet, T.; Heepe, L.; Lambert, P.; Compère, P.; Gorb, S. Liquid secretion and setal compliance: the beetle's winning combination for a robust and reversible adhesion. Current Opinion in Insect Science 2018, 30, 19-25, 10.1016/j.cois.2018.08.002
Tao, Y.; Zhang, Y. Effects of leaf hair points of a desert moss on water retention and dew formation: implications for desiccation tolerance. J. Plant Res. 2012, 125, 351-360, 10.1007/s10265-011-0449-3
Lambert, P.; Delchambre, A. A study of capillary forces as a gripping principle. Assembly Automation 2005, 25, 275-283, 10.1108/01445150510626406
Uran, S.; Safaric, R.; Bratina, B. Reliable and Accurate Release of Micro-Sized Objects with a Gripper that Uses the Capillary-Force Method. Micromachines 2017, 8, 182, 10.3390/mi8060182
Wang, L.; Guan, N.; Rong, W.; Sun, L. Microobjects Gripping with Controllable Menisci Based on Pressure Adjustment. Appl. Mech. Mater. 2013, 373-375, 116-121, 10.4028/www.scientific.net/AMM.373-375.116
Fantoni, G.; Santochi, M.; Dini, G.; Tracht, K.; Scholz-Reiter, B.; Fleischer, J.; Kristoffer Lien, T.; Seliger, G.; Reinhart, G.; Franke, J.; Nørgaard Hansen, H.; Verl, A. Grasping devices and methods in automated production processes. CIRP Annals 2014, 63 (2), 679-701, 10.1016/j.cirp.2014.05.006
Bark, C.; Binnenbose, T.; Vogele, G.; Weisener, T.; Widmann, M. Gripping with low viscosity fluids. MEMS 98 Micro Electro Mechanical Systems 1998, 11, 301-305, 10.1109/MEMSYS.1998.659772
Chadov, A. V.; Yakhnin, E. D. Investigation of the transfer of a liquid from one solid surface to another. 1. slow transfer. method of approximate calculation. Kolloidn. Zh. 1979, 41, 817-820
Yakhnin, E. D.; Chadov, A. V. Investigation of the transfer of a liquid from one solid surface to another. 2. dynamic transfer. Kolloidn. Zh 1983, 45, 1183-1188
Chen, H.; Tang, T.; Amirfazli, A. Fast Liquid Transfer between Surfaces: Breakup of Stretched Liquid Bridges. Langmuir 2015, 31, 11470-11476, 10.1021/acs.langmuir.5b03292
Darhuber, A. A.; Troian, S. M.; Wagner, S. Physical mechanisms governing pattern fidelity in mi-croscale offset printing. J. Appl. Phys. 2001, 90, 3602-3609, 10.1063/1.1389080
Kang, H. W.; Sung, H. J.; Lee, T. M.; Kim, D. S.; Kim, C. J. Liquid transfer between two separating plates for micro-gravure-offset printing. J. Micromech. Microeng. 2009, 19, 015-025, 10.1088/0960-1317/19/1/015025
Ghatkesar, M. K.; Garza, H. H. P.; Heuck, F.; Staufer, U. Scanning Probe Microscope-Based Fluid Dispensing. Micromachines 2014, 5, 954-1001, 10.3390/mi5040954
Urtizberea, A.; Hirtz, M.; Fuchs, H. Ink transport modelling in Dip-Pen Nanolithography and Polymer Pen Lithography. Nanofabrication 2016, 2, 43-53, 10.1515/nanofab-2015-0005
Wu, C. C.; Reinhoudt, D. N.; Otto, C.; Subramaniam, V.; Velders, A. H. Strategies for patterning biomolecules with dip-pen nanolithography. Small 2011, 7, 989-1002, 10.1002/smll.201001749
O'Connell, C. D.; Higgins, M. J.; Marusic, D.; Moulton, S. E.; Wallace, G. G. Liquid Ink Deposition from an Atomic Force Microscope Tip: Deposition Monitoring and Control of Feature Size. Langmuir 2014, 30, 2712-2721, 10.1021/la402936z
Fabie, L.; Durou, H.; Ondarc-uhu, T. Capillary Forces during Liquid Nanodispensing. Langmuir 2010, 26, 1870-1878, 10.1021/la902614s
Meister, A.; Jeney, S.; Liley, M.; Akiyama, T.; Staufer, U.; De-Rooij, N.; Heinzel-mann, H. Nanoscale dispensing of liquids through cantilevered probes. Microelectron. Eng. 2003, 67-68, 644-650, 10.1016/S0167-9317(03)00126-6
Kim, K.; Moldovan, N.; Ke, C.; Espinosa, H. D. A novel AFM chip for fountain pen nanolithography-Design and microfabrication. Micro Nanosyst 2003, 782, 267-272, 10.1557/PROC-782-A5.56
Montgomery, D. C. Design and Analysis of the Experiments, 7 th ed.; John Willey and Sons, Inc: Hoboken, NJ, 2009.
Chen, H.; Tang, T.; Zhao, H.; Law, K. Y.; Amirfazli, A. How pinning and contact angle hysteresis govern quasi-static liquid drop transfer. Soft Matter 2016, 12, 1998-2008, 10.1039/C5SM02451J
Gupta, C.; Mensing, A. G.; Shannon, M. A.; Kenis, P. J. A. Double Transfer Printing of Small Volumes of Liquids. Langmuir 2007, 23, 2906-2914, 10.1021/la063266d
't Mannetje, D. J. C. M.; Mugele, F.; van den Ende, D. Stick-Slip to sliding transition of dynamic contact lines under AC electrowetting. Langmuir 2013, 29, 15116-15121, 10.1021/la402761m
Varagnolo, S.; Ferraro, D.; Fantinel, P.; Pierno, M.; Mistura, G.; Amati, G.; Biferale, L.; Sbragaglia, M. Stick-Slip Sliding of Water Drops on Chemically Heterogeneous Surfaces. Phys. Rev. Lett. 2013, 111 (5), 066101 10.1103/PhysRevLett.111.066101
't Mannetje, D.; Ghosh, S.; Lagraauw, R.; Otten, S.; Pit, A.; Berendsen, C.; Zeegers, J.; van den Ende, D.; Mugele, F. Trapping of drops by wetting defects. Nat. Commun. 2014, 5, 3559, 10.1038/ncomms4559
Liang, Y. E.; Weng, Y. H.; Tsao, H. K.; Sheng, Y. J. Meniscus Shape and Wetting Competition of a Drop between a Cone and a Plane. Langmuir 2016, 32, 8543-8549, 10.1021/acs.langmuir.6b01990
Chen, J. C.; Sheu, J. C.; Lee, Y. T. Maximum stable length of nonisothermal liquid bridges. Phys. Fluids A 1990, 2, 1118-1123, 10.1063/1.857611
Pepin, X.; Rossetti, D.; Iveson, S. M.; Simons, S. J. R. Modeling the Evolution and Rupture of Pendular Liquid Bridges in the Presence of Large Wetting Hysteresis. J. Colloid Interface Sci. 2000, 232, 289-297, 10.1006/jcis.2000.7182
Mazzone, D. N.; Tardos, G. I.; Pfeffer, R. The Effect of Gravity on the Shape and Strength of a Liquid Bridge between Two Spheres. J. Colloid Interface Sci. 1986, 113, 544-556, 10.1016/0021-9797(86)90187-6
Dai, Z.; Lu, S. Liquid bridge rupture distance criterion between spheres. Int. J. Miner. Process. 1998, 53, 171-181, 10.1016/S0301-7516(97)00078-1
Darabi, P.; Li, T.; Pougatch, K.; Salcudean, M.; Grecov, D. Modeling the evolution and rupture of stretching pendular liquid bridges. Chem. Eng. Sci. 2010, 65, 4472-4483, 10.1016/j.ces.2010.04.003