Bullock JMR, Federle W. 2009 Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance. J. Exp. Biol. 212, 1876–1888. (doi:10.1242/jeb.030551)
Gernay SM, Labousse S, Lambert P, Compère P, Gilet T. 2017 Multi-scale tarsal adhesion kinematics of freely-walking dock beetles. J. R. Soc. Interface 14, 20170493. (doi:10.1098/rsif.2017.0493)
Dai Z, Gorb SN, Schwarz U. 2002 Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 205, 2479.
Beutel RG, Gorb SN. 2001 Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J. Zool. Syst. Evol. Res. 39, 177–207. (doi:10.1046/j.1439-0469.2001.00155.x)
Gorb SN. 2011 Biological fibrillar adhesives: functional principles and biomimetic applications. In Handbook of adhesion technology (eds LFM. da Silva, A Öchsner, RD Adams), pp. 1409–1436. Berlin, Germany: Springer.
Zhou Y, Robinson A, Steiner U, Federle W. 2014 Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates. J. R. Soc. Interface 11, 20140499. (doi:10.1098/rsif.2014.0499)
Gilet T, Heepe L, Lambert P, Compère P, Gorb SN. 2018 Liquid secretion and setal compliance: the beetle’s winning combination for a robust and reversible adhesion. Curr. Opin. Insect Sci. 30, 19–25. (doi:10.1016/j.cois.2018.08.002)
Bullock JMR, Federle W. 2011 Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae. Naturwissenschaften 98, 381–387. (doi:10.1007/ s00114-011-0781-4)
Gernay SM, Federle W, Lambert P, Gilet T. 2016 Elasto-capillarity in insect fibrillar adhesion. J. R. Soc. Interface 13, 20160371. (doi:10.1098/rsif. 2016.0371)
Bullock JMR, Federle W. 2011 The effect of surface roughness on claw and adhesive hair performance in the dock beetle Gastrophysa viridula. Insect Sci. 18, 298–304. (doi:10.1111/j.1744-7917.2010.01369.x)
Lambert P. 2007 Capillary forces in microassembly, modeling, simulations, experiments and case study. New York, NY: Springer Science.
Geiselhardt SF, Federle W, Prum B, Geiselhardt S, Lamm S, Peschke K. 2010 Impact of chemical manipulation of tarsal liquids on attachment in the Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 56, 398–404. (doi:10.1016/j. jinsphys.2009.11.016)
Peisker H, Gorb SN. 2012 Evaporation dynamics of tarsal liquid footprints in flies (Calliphora vicina) and beetles (Coccinella septempunctata). J. Exp. Biol. 215, 1266–1271. (doi:10.1242/jeb.065722)
Dirks J-H, Federle W. 2011 Fluid-based adhesion in insects—principles and challenges. Soft Matter 7, 11 047–11 053. (doi:10.1039/c1sm06269g)
Gilet T, Gernay S-M, Aquilante L, Mastrangeli M, Lambert P. 2019 Adhesive elastocapillary force on a cantilever beam. Soft Matter 15, 3999–4007. (doi:10.1039/C9SM00217K)
Betz O. 2003 Structure of the tarsi in somestenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J. Morphol. 255, 24–43. (doi:10.1002/jmor. 10044)
Geiselhardt SF, Lamm S, Gack C, Peschke K. 2010 Interaction of liquid epicuticular hydrocarbons and tarsal adhesive secretion in Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196, 369–378. (doi:10.1007/s00359-010-0522-8)
Geiselhardt SF, Geiselhardt S, Peschke K. 2009 Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 19, 185–193. (doi:10.1007/s00049-009-0021-y)
Drechsler P, Federle W. 2006 Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J. Comp. Physiol. A 192, 1213–1222. (doi:10.1007/s00359-006-0150-5)
Heepe L, Wolff JO, Gorb SN. 2016 Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata). Beilstein J. Nanotechnol. 7, 1322–1329. (doi:10. 3762/bjnano.7.123)
Abou B, Gay C, Laurent B, Cardoso O, Voigt D, Peisker H, Gorb SN. 2010 Extensive collection of femtolitre pad secretion droplets in the beetle Leptinotarsa decemlineata allows nanolitre microrheology. J. R. Soc. Interface 7, 1745–1752. (doi:10.1098/rsif.2010.0075)
Peisker H, Heepe L, Kovalev AE, Gorb SN. 2014 Comparative study of the fluid viscosity in tarsal hairy attachment systems of flies and beetles. J. R. Soc. Interface 11, 20140752. (doi:10.1098/rsif. 2014.0752)
Heepe L, Grohmann C, Gorb SN. 2017 Visualization of the number of tarsal adhesive setae used during normal and ceiling walk in a ladybird beetle: a case study. In Functional surfaces in biology III: diversity of the physical phenomena (eds SN Gorb, EV Gorb), vol. 10, pp. 193–203. Cham, Switzerland: Springer Nature.
Kwon H-M, Kim H-Y, Puëll J, Mahadevan L. 2008 Equilibrium of an elastically confined liquid drop. J. Appl. Phys. 103, 093519. (doi:10.1063/1. 2913512)
Peisker H, Michels J, Gorb SN. 2013 Evidence for a material gradient in the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata. Nat. Commun. 4, 1661. (doi:10. 1038/ncomms2576)
Gorb EV, Hosoda N, Miksch C, Gorb SN. 2010 Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system. J. R. Soc. Interface 7, 1571–1579. (doi:10.1098/rsif. 2010.0081)
Voigt D, Schweikart A, Fery A, Gorb S. 2012 Leaf beetle attachment on wrinkles: isotropic friction on anisotropic surfaces. J. Exp. Biol. 215, 1975–1982. (doi:10.1242/jeb.068320)
Persson BNJ. 2003 On the mechanism of adhesion in biological systems. J. Chem. Phys. 28, 7614. (doi:10.1063/1.1562192)
Clemente CJ, Bullock JMR, Beale A, Federle W. 2010 Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects. J. Exp. Biol. 213, 635–642. (doi:10.1242/jeb.038232)
Clemente CJ, Federle W. 2012 Mechanisms of self-cleaning in fluid-based smooth adhesive pads of insects. Bioinspir. Biomim. 7, 046001. (doi:10.1088/ 1748-3182/7/4/046001)
Amador GJ, Endlein T, Sitti M. 2017 Soiled adhesive pads shear clean by slipping: a robust self-cleaning mechanism in climbing beetles. J. R. Soc. Interface 14, 20170134. (doi:10.1098/rsif.2017.0134)
Zhou Y, Robinson A, Viney C, Federle W. 2015 Effect of shear forces and ageing on the compliance of adhesive pads in adult cockroaches. J. Exp. Biol. 218, 2775–2781. (doi:10.1242/jeb.124362)
Bullock JMR, Drechsler P, Federle W. 2008 Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J. Exp. Biol. 211, 3333–3343. (doi:10.1242/jeb.020941)
Dirks J-H. 2014 Physical principles of fluid-mediated insect attachment—shouldn’t insects slip? Beilstein J. Nanotechnol. 5, 1160–1166. (doi:10.3762/bjnano. 5.127)
Betz O et al. 2017 Adhesion and friction of the smooth attachment system of the cockroach Gromphadorhina portentosa and the influence of the application of fluid adhesives. Biol. Open 6, 589–601. (doi:10.1242/bio.024620)
Spolenak R, Gorb S, Arzt E. 2005 Adhesion design maps for bio-inspired attachment systems. Acta Biomater. 1, 5–13. (doi:10.1016/j.actbio.2004.08. 004)
Duprat C, Protiere S, Beebe AY, Stone HA. 2012 Wetting of flexible fibre arrays. Nature 482, 510–513. (doi:10.1038/nature10779)
Chen H, Tang T, Amirfazli A. 2014 Liquid transfer mechanism between two surfaces and the role of contact angles. Soft Matter 10, 2503. (doi:10.1039/ c4sm00075g)
Dirks J-H, Federle W. 2011 Mechanisms of fluid production in smooth adhesive pads of insects. J. R. Soc. Interface 8, 952–960. (doi:10.1098/rsif. 2010.0575)
Voigt D, Hosoda N, Schuppert J, Gorb S. 2011 On the laboratory rearing of green dock leaf beetles Gastrophysa viridula (Coleoptera: Chrysomelidae). Insect Sci. 18, 379–384. (doi:10.1111/j.1744-7917. 2010.01355.x)
Chen H, Tang T, Amirfazli A. 2015 Fast liquid transfer between surfaces: breakup of stretched liquid bridges. Langmuir 31, 11470.11476 (doi:10. 1021/acs.langmuir.5b03292)
Liu Z, Liang A-P. 2016 Ultramorphology of the tarsal adhesive structures of eight leaf beetle species (Coleoptera: Chrysomelidae). J. Kans. Entomol. Soc. 89, 215–230. (doi:10.2317/JKESD1600016.1)
Stork NE. 1983 The adherence of beetle tarsal setae to glass. J. Nat. Hist. 17, 583–597. (doi:10.1080/ 00222938300770481)
Eimüller T, Guttmann P, Gorb SN. 2008 Terminal contact elements of insect attachment devices studied by transmission X-ray microscopy. J. Exp. Biol. 211, 1958–1963. (doi:10.1242/jeb.014308)
Stork NE. 1980 A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool. J. Linn. Soc. 68, 173–306. (doi:10.1111/j.1096-3642.1980.tb01121.x)
Linsenmair KE, Jander R. 1963 Das ‘Entspannungsschwimmen’ von Velia und Stenus. Naturwissenschaften 50, 231. (doi:10.1007/ BF00639292)
Bush JW, Hu DL. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339–369. (doi:10.1146/annurev.fluid.38. 050304.092157)
Schildknecht H. 1976 Chemical ecology? A chapter of modern natural products chemistry. Angew. Chem. Int. Ed. Engl. 15, 214–222. (doi:10.1002/ anie.197602141)
Locke M. 1961 Pore canals and related structures in insect cuticle. J. Cell Biol. 10, 589–618. (doi:10. 1083/jcb.10.4.589)
Neville AC, Thomas MG, Zelazny B. 1969 Pore canal shape related to molecular architecture of arthropod cuticle. Tissue Cell 1, 183–200. (doi:10.1016/S0040-8166(69)80011-X)
Hendricks GM, Hadley NF. 1983 Structure of the cuticle of the common house cricket with reference to the location of lipids. Tissue Cell 15, 761–779. (doi:10.1016/0040-8166(83)90049-6)
Wigglesworth V. 1985 The transfer of lipid in insects from the epidermal cells to the cuticle. Tissue Cell 17, 249–265. (doi:10.1016/0040-8166(85)90092-8)
King RC, Akai H (eds). 1984 Insect ultrastructure, vol. 2, p. 650. New York, NY: Plenum Press.
Compére P, Goffinet G. 1987 Ultrastructural shape and three-dimensional organization of the intracuticular canal systems in the mineralized cuticle of the green crab Carcinus maenas. Tissue Cell 19, 839–857. (doi:10.1016/0040-8166(87) 90024-3)
Locke M. 1960 The cuticle and wax secretion in Calpodes ethlius (Lepidoptera, Hesperidae). J. Cell Sci. s3–101, 333–338.
Brück E, Stockem W. 1972 Morphologische Untersuchungen an der Cuticula von Insekten. Zeitschrift für Zellforschung und Mikroskopische Anatomie 132, 403–416. (doi:10.1007/BF02450716)
Wigglesworth VB. 1975 Incorporation of lipid into the epicuticle of Rhodnius (Hemiptera). J. Cell Sci. 19, 459.
Filshie BK. 1970 The resistance of epicuticular components of an insect to extraction with lipid solvents. Tissue Cell 2, 181–190. (doi:10.1016/ S0040-8166(70)80014-3)
Locke M. 1966 The structure and formation of the cuticulin layer in the epicuticle of an insect, Calpodes ethlius (Lepidoptera, Hesperiidae). J. Morphol. 118, 461–494. (doi:10.1002/jmor. 1051180403)
Wigglesworth VB. 1985 Sclerotin and lipid in the waterproofing of the insect cuticle. Tissue Cell 17, 227–248. (doi:10.1016/0040-8166(85)90091-6)
Marshall AT, Lewis CT, Parry G. 1974 Paraffin tubules secreted by the cuticle of an insect Epipyrops anomala (Epipyropidae: Lepidoptera). J. Ultrastruct. Res. 47, 41–60. (doi:10.1016/S0022-5320(74)90025-2)
Hadley NF, Filshie BK. 1979 Fine structure of the epicuticle of the desert scorpion, Hadrurus arizonensis, with reference to location of lipids. Tissue Cell 11, 263–275. (doi:10.1016/0040-8166(79)90041-7)
Locke M. 1965 Permeability of insect cuticle to water and lipids. Science 147, 295–298. (doi:10. 1126/science.147.3655.295)
Locke M, Krishnan N. 1971 The distribution of phenoloxidases and polyphenols during cuticle formation. Tissue Cell 3, 103–126. (doi:10.1016/ S0040-8166(71)80034-4)
Noirot C, Quennedey A. 1974 Fine structure of insect epidermal glands. Annu. Rev. Entomol. 19, 61–80. (doi:10.1146/annurev.en.19.010174.000425)
Geiselhardt SF, Geiselhardt S, Peschke K. 2011 Congruence of epicuticular hydrocarbons and tarsal secretions as a principle in beetles. Chemoecology 21, 181–186. (doi:10.1007/s00049-011-0077-3)
Taylor WJ. 1948 Average length and radius of normal paraffln hydrocarbon molecules. J. Chem. Phys. 16, 257–267. (doi:10.1063/ 1.1746864)
Sparreboom W, Van Den Berg A, Eijkel JC. 2010 Transport in nanofluidic systems: a review of theory and applications. New J. Phys. 12, 015004. (doi:10. 1088/1367-2630/12/1/015004)
Secchi E, Marbach S, Niguès A, Stein D, Siria A, Bocquet L. 2016 Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213. (doi:10.1038/nature19315)
Abramyan AK, Bessonov NM, Mirantsev LV, Reinberg NA. 2015 Influence of liquid environment and bounding wall structure on fluid flow through carbon nanotubes. Phys. Lett. A 379, 1274–1282. (doi:10.1016/j.physleta.2015.03.001)
Mattia D, Gogotsi Y. 2008 Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid. Nanofluidics 5, 289–305. (doi:10.1007/s10404-008-0293-5)
Debye P, Cleland RL. 1959 Flow of liquid hydrocarbons in porous vycor. J. Appl. Phys. 30, 843–849. (doi:10.1063/1.1735251)
Wang S, Feng Q, Javadpour F, Xia T, Li Z. 2015 Oil adsorption in shale nanopores and its effect on recoverable oil-in-place. Int. J. Coal Geol. 148, 9–24. (doi:10.1016/j.coal.2015.06.002)
Zhao J, Kang Q, Yao J, Zhang L, Li Z, Yang Y, Sun H. 2018 Lattice Boltzmann simulation of liquid flow in nanoporous media. Int. J. Heat Mass Transf. 125, 1131–1143. (doi:10.1016/j.ijheatmasstransfer.2018. 04.123)
Wu K, Chen Z, Li J, Li X, Xu J, Dong X. 2017 Wettability effect on nanoconfined water flow. Proc. Natl Acad. Sci. USA 114, 3358–3363. (doi:10.1073/ pnas.1612608114)
Wang F, Zhao Y. 2011 The unique properties of the solid-like confined liquid films: a large scale molecular dynamics simulation approach. Acta Mech. Solida Sin. 24, 101–116. (doi:10.1016/S0894-9166(11)60012-8)
Pal R. 1950 The wetting of insect cuticle. Bull. Entomol. Res. 41, 121–139. (doi:10.1017/ S0007485300027528)
Vacatello M, Yoon DY. 1991 Molecular arrangements and conformations of chain molecules near impenetrable surfaces. Makromol. Chem., Macromol. Symp. 48–49, 349–361. (doi:10.1002/masy. 19910480125)
Wang S, Feng Q, Zha M, Lu S, Qin Y, Xia T, Zhang C. 2015 Molecular dynamics simulation of liquid alkane occurrence state in pores and fractures of shale organic matter. Pet. Explor. Dev. 42, 844. (doi:10.1016/S1876-3804(15)30081-1)
Chapman RF. 2013 Integument. In The insects: structure and function (eds SJ Simpson, AE Douglas), p. 959, 5th edn. New York, NY: Cambridge University Press.
Carr R, Comer J, Ginsberg MD, Aksimentiev A. 2011 Modeling pressure-driven transport of proteins through a nanochannel. IEEE Trans. Nanotechnol. 10, 75–82. (doi:10.1109/TNANO.2010.2062530)
Kievsky YY, Carey B, Naik S, Mangan N, Ben-Avraham D, Sokolov I. 2008 Dynamics of molecular diffusion of rhodamine 6G in silica nanochannels. J. Chem. Phys. 128, 151102. (doi:10. 1063/1.2908875)
Wang X, Xiao S, Zhang Z, He J. 2018 Displacement of nanofluids in silica nanopores: influenced by wettability of nanoparticles and oil components. Environ. Sci. Nano 5, 2641–2650. (doi:10.1039/ C8EN00704G)
Federle W, Riehle M, Curtis A, Full R. 2002 An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr. Comp. Biol. 42, 1100–1106. (doi:10.1093/icb/42.6.1100)
Yamaguchi A, Yoda T, Suzuki S, Morita K, Teramae N. 2006 Diffusivities of tris(2,2’-bipyridyl)ruthenium inside silica-nanochannels modified with alkylsilanes. Anal. Sci. 22, 1501–1507. (doi:10.2116/ analsci.22.1501)
Hofmann T, Wallacher D, Mayorova M, Zorn R, Frick B, Huber P. 2012 Molecular dynamics of n-hexane: a quasi-elastic neutron scattering study on the bulk and spatially nanochannel-confined liquid. J. Chem. Phys. 136, 124505. (doi:10.1063/1. 3696684)
Goertz MP, Houston JE, Zhu XY. 2007 Hydrophilicity and the viscosity of interfacial water. Langmuir 23, 5491–5497. (doi:10.1021/la062299q)
Ortiz-Young D, Chiu HC, Kim S, Voïtchovsky K, Riedo E. 2013 The interplay between apparent viscosity and wettability in nanoconfined water. Nat. Commun. 4, 2482. (doi:10.1038/ncomms3482)