In-field proximal sensing of septoria tritici blotch, stripe rust and brown rust in winter wheat by means of reflectance and textural features from multispectral imagery
Bebronne, Romain ; Biosystems Dynamics and Exchanges, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux, 5030, Belgium
Carlier, Alexis ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Meurs, Rémy ; Plant Sciences, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, Gembloux, 5030, Belgium
Leemans, Vincent ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Vermeulen, Philippe; Walloon Agricultural Research Centre, Knowledge and Valorization of Agricultural Products Department, Quality and Authentication of Agricultural Products, Chaussée de Namur, 24, Gembloux, 5030, Belgium
Dumont, Benjamin ; Université de Liège - ULiège > Département GxABT > Phytotechnie tempérée
Mercatoris, Benoît ; Université de Liège - ULiège > Département GxABT > Biosystems Dynamics and Exchanges
Language :
English
Title :
In-field proximal sensing of septoria tritici blotch, stripe rust and brown rust in winter wheat by means of reflectance and textural features from multispectral imagery
Publication date :
2020
Journal title :
Biosystems Engineering
ISSN :
1537-5110
eISSN :
1537-5129
Publisher :
Academic Press
Volume :
197
Pages :
257-269
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
PHENWHEAT D31-1385
Funders :
DGA - Région wallonne. Direction générale de l'Agriculture
Arora, A., Venkatesh, K., Sharma, R.K., Saharan, M.S., Dilbaghi, N., Sharma, I., et al. Evaluating vegetation indices for precision phenotyping of quantitative stripe rust reaction in wheat. Journal of Wheat Research 6:1 (2014), 74–80.
Baraldi, A., Parmiggiani, F., Investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Transactions on Geoscience and Remote Sensing 33:2 (1995), 293–308.
Barmpalexis, P., Karagianni, A., Nikolakakis, I., Kachrimanis, K., Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of cocrystal formulations by Raman and ATR-FTIR spectroscopy. Journal of Pharmaceutical and Biomedical Analysis 158 (2018), 214–224.
Bodson, B., De Proft, M., Watillon, B., Livre Blanc Céréales. Septembre 2017. 2017 (in French).
Bravo, C., Moshou, D., West, J., McCartney, A., Ramon, H., Early disease detection in wheat fields using spectral reflectance. Biosystems Engineering 84:2 (2003), 137–145.
Devadas, R., Lamb, D.W., Simpfendorfer, S., Backhouse, D., Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precision Agriculture 10 (2009), 459–470.
Downing, H.G., Carter, G.A., Holladay, K.W., Cibula, W.G., The radiative-equivalent water thickness of leaves. Remote Sensing of Environment 46:1 (1993), 103–107.
Filella, I., Serrano, L., Serra, J., Peñuelas, J., Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science 35:5 (1995), 1400–1405.
Gitelson, A.A., Gritz, Y., Merzlyak, M.N., Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160 (2003), 271–282.
Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment 90 (2004), 337–352.
Inoue, Y., Guérif, M., Baret, F., Skidmore, A., Gitelson, A.A., Schlerf, M., et al. Simple and robust methods for remote sensing of canopy chlorophyll content: A comparative analysis of hyperspectral data for different types of vegetation. Plant, Cell and Environment 39 (2016), 2609–2623.
Koch, B., Ammer, U., Schneider, T., Wittmeier, H., Spectroradiometer measurements in the laboratory and in the field to analyse the influence of different damage symptoms on the reflection spectra of forest trees. International Journal of Remote Sensing 11:7 (1990), 1145–1163.
Krishna, G., Sahoo, R.N., Pargal, S., Gupta, V.K., Sinha, P., Bhagat, S., et al. Assessing wheat yellow rust disease through hyperspectral remote sensing. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives XL:8 (2014), 1413–1416.
Kuska, M., Wahabzada, M., Leucker, M., Dehne, H.-W., Kersting, K., Oerke, E.-C., et al. Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions. Plant Methods, 11, 2015, 28.
Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L., Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. Journal of Experimental Social Psychology 49 (2013), 764–766.
Lindblom, J., Lundström, C., Ljung, M., Jonsson, A., Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precision Agriculture 18 (2017), 309–331.
Lin, M.B., Groves, W.A., Freivalds, A., Lee, E.G., Harper, M., Comparison of artificial neural network (ANN) and partial least squares (PLS) regression models for predicting respiratory ventilation: An exploratory study. European Journal of Applied Physiology 112 (2012), 1603–1611.
Li, L., Zhang, Q., Huang, D., A review of imaging techniques for plant phenotyping. Sensors (Switzerland) 14 (2014), 20078–20111.
Lowe, A., Harrison, N., French, A.P., Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods, 13, 2017, 80.
Mahlein, A.-K., Plant disease detection by imaging sensors - Paralles and specific demands for precision agriculture and plant phenotyping. Plant Disease 100:2 (2016), 241–251.
Mahlein, A.-K., Oerke, E.-C., Steiner, U., Dehne, H.W., Recent advances in sensing plant diseases for precision crop protection. European Journal of Plant Pathology 133 (2012), 197–209.
Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., et al. Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development 35 (2015), 1–25.
Mewes, T., Franke, J., Menz, G., Spectral requirements on airborne hyperspectral remote sensing data for wheat disease detection. Precision Agriculture 12 (2011), 795–812.
Mohanty, S.P., Hughes, D.P., Salathé, M., Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7, 2016, 1419.
Moshou, D., Bravo, C., Oberti, R., West, J.S., Ramon, H., Vougioukas, S., et al. Intelligent multi-sensor system for the detection and treatment of fungal diseases in arable crops. Biosystems Engineering 108 (2011), 311–321.
Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., Ramon, H., Automatic detection of “yellow rust” in wheat using reflectance measurements and neural networks. Computers and Electronics in Agriculture 44:3 (2004), 173–188.
Naik, H.S., Zhang, J., Lofquist, A., Assefa, T., Sarkar, S., Ackerman, D., et al. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods, 13, 2017, 23.
Nebiker, S., Lack, N., Abächerli, M., Läderach, S., Light-weight multispectral uav sensors and their capabilities for predicting grain yield and detecting plant diseases. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (2016), 963–970.
Odilbekov, F., Armoniené, R., Henriksson, T., Chawade, A., Proximal phenotyping and machine learning methods to identify septoria tritici blotch disease symptoms in wheat. Frontiers in Plant Science, 9, 2018, 685.
Peñuelas, J., Filella, L., Technical focus: Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science 3:4 (1998), 151–156.
Peterson, R.F., Campbell, A.B., Hannah, A.E., A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research 26:5 (1948), 496–500.
Rousseeuw, P.J., Croux, C., Alternatives to the median absolute deviation. Journal of the American Statistical Association 88:424 (1993), 1273–1283.
Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dhene, H.-W., Plümer, L., Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Computers and Electronics in Agriculture 74 (2010), 91–99.
Sankaran, S., Mishra, A., Ehsani, R., Davis, C., A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture 72 (2010), 1–13.
Tenenhaus, M., Gauchi, J.-P., Ménardo, C., Revue de statistique appliquée - Régression PLS et applications (PLS regression and applications), Vol. 43, 1995 Retrieved from http://www.sfds.asso.fr/publicat/rsa.htm.
Van Der Werf, H.M.G., Assessing the impact of pesticides on the environment. Agriculture, Ecosystems & Environment 60 (1996), 81–96.
Verrelst, J., Koetz, B., Kneubühler, M., Schaepman, M., Directional sensitivity analysis of vegetation indices from multi-angular CHRIS/PROBA data. ISPRS commission VII-term symposium, 2006, 677–683.
Wahabzada, M., Mahlein, A.-K., Bauckhage, C., Steiner, U., Oerke, E.-C., Kersting, K., Metro maps of plant disease dynamics—Automated mining of differences using hyperspectral images. PloS One, 10(1), 2015, e0116902.
Yu, K., Anderegg, J., Mikaberidze, A., Karisto, P., Mascher, F., McDonald, B.A., et al. Hyperspectral canopy sensing of wheat septoria tritici blotch disease. Frontiers in Plant Science, 9, 2018, 1195.
Yuan, L., Huang, Y., Loraamm, R.W., Nie, C., Wang, J., Zhang, J., Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Field Crops Research 156 (2014), 199–207.
Zadoks, J.C., Chang, T.T., Konzak, C.F., A decimal code for the growth stages of cereals. Weed Research 14:6 (1974), 415–421.
Zhang, J., Pu, R., Wang, J., Huang, W., Yuan, L., Luo, J., Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture 85 (2012), 13–23.
Zhao, S., Wang, Q., Yao, Y., Du, S., Zhang, C., Li, J., et al. Estimating and validating wheat leaf water content with three MODIS spectral indexes: A case study in Ningxia plain, China. Journal of Agricultural Science and Technology 18 (2016), 387–398.