2D materials; charge density wave; transition-metal dichalcogenide
Abstract :
[en] Despite intense efforts on all known quasi-two-dimensional superconductors, the origin and exact boundary of the electronic orderings, particularly charge density waves and superconductivity, are still attractive problems with several open questions. Here, in order to reveal how the superconducting gap evolves, we report on high quality complementary measurements of magneto-optical imaging, specific heat, magnetic susceptibility, resistivity measurements, Andreev spectroscopy, and London penetration depth λab(T) measurements supplemented with theoretical calculations for 2H-NbSe2 and 2H-NbS2 single crystals. The temperature dependence of λab(T)calculated from the lower critical field and Andreev spectroscopy can be well described by using a two-band model with s-wave-like gaps. The effect of pressure on the superconducting gap of both systems illustrates that both bands are practically affected. Upon compression, the Fermi surfaces do not change significantly, and the nesting remains almost unaffected compared to that at ambient condition. However, a strong bending in the upper critical fields (Hc2) curves is obtained under pressure and support the presence of a strong Pauli paramagnetic effect. In NbSe2, using a two-band model with s-wave-like gaps, the temperature dependence Hc2 (T) can be properly described. In contrast to that, the behavior of Hc2 for NbS2 is ruled by the spin paramagnetic effect. The estimated values of the penetration depth at T = 0 K confirm that NbSe2 and NbS2 superconductors depart from a Uemura-style relationship between Tc with 1/λab^2, the in-plane superconducting penetration depth.
Disciplines :
Physics
Author, co-author :
Majumdar, Arnab; Uppsala University, Sweden
VanGennep, Derrick; Harvard University, Cambridge, Massachusetts 02138, USA
Brisbois, Jérémy ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Chareev, Dmitriy; Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432, Chernogolovka, Moscow District, Russia
Sadakov, A.D.; 4Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432, Chernogolovka, Moscow District, Russia
Usoltsev, A.S.; 4Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432, Chernogolovka, Moscow District, Russia
Mito, Masaki; Kyushu Institute of Technology, Fukuoka 804–8550, Japan
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Sarkar, Tapati; Department of Materials Science and Engineering, Uppsala University, Box 534, SE-75121, Sweden
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. B. Maple, in Magnetism and Magnetic Materials-1976: Proceedings of the First Joint MMM-Intermag Conference, edited by H. C. Wolfe, J. J. Becker, and G. H. Lander, AIP Conf. Proc. No. 34 (AIP, New York, 1976), p. 71.
P. C. Canfield, P. L. Gammel, and D. J. Bishop, New magnetic superconductors: A toy box for solid-state physicists, Physics Today 51 (10), 40 (1998) 10.1063/1.882396.
M. D. Johannes and I. I. Mazin, Phys. Rev. B 77, 165135 (2008) 10.1103/PhysRevB.77.165135.
J. J. Hamlin, D. A. Zocco, T. A. Sayles, and M. B. Maple, Phys. Rev. Lett. 102, 177002 (2009) 10.1103/PhysRevLett.102.177002.
D. A. Zocco, J. J. Hamlin, K. Grube, J. Chu, H. Kuo, I. R. Fisher, and M. B. Maple, Phys. Rev. B 91, 205114 (2015) 10.1103/PhysRevB.91.205114.
Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012) 10.1038/nnano.2012.193.
A. K. Geim and I. V Grigorieva, Nature (London) 499, 419 (2013) 10.1038/nature12385.
E. Revolinsky, E. P. Lautenschlager, and C. H. Armitage, Solid State Commun. 1, 59 (1963) 10.1016/0038-1098(63)90358-2.
I. Guillamon, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodiere, Phys. Rev. Lett. 101, 166407 (2008) 10.1103/PhysRevLett.101.166407.
H. N. S. Lee, H. McKinzie, D. S. Tannhauser, and A. Wold, J. Appl. Phys. 40, 602 (1969) 10.1063/1.1657440.
R. Grasset, T. Cea, Y. Gallais, M. Cazayous, A. Sacuto, L. Cario, L. Benfatto, and M. Méasson, Phys. Rev. B 97, 094502 (2018) 10.1103/PhysRevB.97.094502.
M. Leroux, M. Le Tacon, M. Calandra, L. Cario, M.-A. Measson, P. Diener, E. Borrissenko, A. Bosak, and P. Rodiere, Phys. Rev. B 86, 155125 (2012) 10.1103/PhysRevB.86.155125.
F. Flicker and J. Van Wezel, Nat. Commun. 6, 7034 (2015) 10.1038/ncomms8034.
Z. Liu, L. Cai, and X. Zhang, J. Alloys Compd. 610, 472 (2014) 10.1016/j.jallcom.2014.05.013.
E. Boaknin, M. A. Tanatar, J. Paglione, D. Hawthorn, F. Ronning, R. W. Hill, M. Sutherland, L. Taillefer, J. Sonier, S. M. Hayden, and J. W. Brill, Phys. Rev. Lett. 90, 117003 (2003) 10.1103/PhysRevLett.90.117003.
H. F. Hess, R. B. Robinson, and J. V Waszczak, Phys. Rev. Lett. 64, 2711 (2000) 10.1103/PhysRevLett.64.2711.
C. L. Huang, J. Lin, Y. T. Chang, C. P. Sun, H. Y. Shen, C. C. Chou, H. Berger, T. K. Lee, and H. D. Yang, Phys. Rev. B 76, 212504 (2007) 10.1103/PhysRevB.76.212504.
A. Bussmann-Holder, R. Micnas, and A. R. Bishop, Eur. Phys. J. B 37, 345 (2004) 10.1140/epjb/e2004-00065-5.
S. Fiechter and H.-M. Kuhne, J. Crystallogr. Growth 83, 517 (1987) 10.1016/0022-0248(87)90246-6.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevMaterials.4.084005 for more details on the sample preparation, crystal structure, temperature dependence of the resistivity, and atomic distances under pressure, and superconducting parameters at ambient pressure.
M. Mito, M. Hitaka, T. Kawae, K. Takeda, T. Kitai, and N. Toyoshima, Jpn. J. Appl. Phys. 40, 6641 (2001) 10.1143/JJAP.40.6641.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. De Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009) 10.1088/0953-8984/21/39/395502.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 10.1103/PhysRevLett.77.3865.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976) 10.1103/PhysRevB.13.5188.
C. Jooss, J. Albrecht, H. Kuhn, S. Leonhardt, and H. Kronmuller, Rep. Prog. Phys. 65, 651 (2002) 10.1088/0034-4885/65/5/202.
G. Shaw, J. Brisbois, L. B. G. L. Pinheiro, J. Müller, S. B. Alvarez, T. Devillers, N. M. Dempsey, J. E. Scheerder, J. Van de Vondel, S. Melinte, P. Vanderbemden, M. Motta, W. A. Ortiz, K. Hasselbach, R. B. G. Kramer, and A V Silhanek, Rev. Sci. Instrum. 89, 023705 (2018) 10.1063/1.5016293.
T. Valla, A. V Fedorov, P. D. Johnson, P.-A. Glans, C. McGuinness, K. E. Smith, E. Y. Andrei, and H. Berger, Phys. Rev. Lett. 92, 086401 (2004) 10.1103/PhysRevLett.92.086401.
X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forró, J. Shan, and K. F. Mak, Nat. Nanotechnol. 10, 765 (2015) 10.1038/nnano.2015.143.
M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-aristizabal, H. Ryu, M. T. Edmonds, H. Tsai, A. Riss, S. Mo, D. Lee, A. Zettl, Z. Hussain, Z. Shen, and M. F. Crommie, Nat. Phys. 12, 92 (2016) 10.1038/nphys3527.
M. D. Johannes, I. I. Mazin, and C. A. Howells, Phys. Rev. B 73, 205102 (2006) 10.1103/PhysRevB.73.205102.
T. Giamarchi and S. Bhattacharya, in High Magnetic Fields, edited by C. Berthier, L. P. Levy, and G. Martinez, 1st ed. (Springer-Verlag, Berlin, 2001), pp. 314-360.
V. G. Tissen, M. R. Osorio, J. P. Brison, N. M. Nemes, M. Garcia-Hernandez, L. Cario, P. Rodiere, S. Vieira, and H. Suderow, Phys. Rev. B 87, 134502 (2013) 10.1103/PhysRevB.87.134502.
M. Leroux, I. Errea, M. Le Tacon, S. Souliou, G. Garbarino, L. Cario, A. Bosak, F. Mauri, M. Calandra, and P. Rodiere, Phys. Rev. B 92, 140303 (2015) 10.1103/PhysRevB.92.140303.
R. Kummel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990) 10.1103/PhysRevB.42.3992.
M. Abdel-Hafiez, P. J. Pereira, S. A. Kuzmichev, T. E. Kuzmicheva, V. M. Pudalov, L. Harnagea, A. A. Kordyuk, A. V. Silhanek, V. V. Moshchalkov, B. Shen, Hai-Hu Wen, A. N. Vasiliev, and Xiao-Jia Chen, Phys. Rev. B 90, 054524 (2014) 10.1103/PhysRevB.90.054524.
S. V. Borisenko, A. A. Kordyuk, V. B. Zabolotnyy, D. S. Inosov, D. Evtushinsky, B. Buechner, A. N. Yaresko, A. Varykhalov, R. Follath, W. Eberhardt, L. Patthey, and H. Berger, Phys. Rev. Lett. 102, 166402 (2009) 10.1103/PhysRevLett.102.166402.
J. A. Wilson, F. J. Di Salvo, and S. Mahajan, Phys. Rev. Lett. 32, 882 (1974) 10.1103/PhysRevLett.32.882.
L. F. Mattheiss, Phys. Rev. Lett. 30, 784 (1973) 10.1103/PhysRevLett.30.784.
M.-H. Whangbo and E. Canadell, J. Am. Chem. Soc. 114, 9587 (1992) 10.1021/ja00050a044.
A. Bianconi and T. Jarlborg, Nov. Supercond. Mater. 1, 37 (2015).
A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962) 10.1103/PhysRevLett.9.266.
N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966) 10.1103/PhysRev.147.295.
A. Gurevich, Phys. Rev. B 67, 184515 (2003) 10.1103/PhysRevB.67.184515.
M. Abdel-Hafiez, J. Ge, A. N. Vasiliev, D. A. Chareev, J. Van de Vondel, and A. V. Silhanek, Phys. Rev. B, 88, 174512 (2013) 10.1103/PhysRevB.88.174512.
M. Angst, R. Puzniak, A. Wisniewski, J. Jun, S. M. Kazakov, J. Karpinski, J. Roos, and H. Keller, Phys. Rev. Lett. 88, 167004 (2002) 10.1103/PhysRevLett.88.167004.
E. H. Brandt, Phys. Rev. B 60, 11939 (1999) 10.1103/PhysRevB.60.11939.
A. Carrington and F. Manzano, Phys. C 385, 205 (2003) 10.1016/S0921-4534(02)02319-5.
T. Saito, S. Onari, and H. Kontani, Phys. Rev. B 88, 045115 (2013) 10.1103/PhysRevB.88.045115.
D. C. Johnston, Supercond. Sci. Technol. 26, 115011 (2013) 10.1088/0953-2048/26/11/115011.
K. Rossnagel, O. Seifarth, L. Kipp, M. Skibowski, D. Vob, P. Kruger, A. Mazur, and J. Pollman, Phys. Rev. B 64, 235119 (2001) 10.1103/PhysRevB.64.235119.
T. Klein, L. Lyard, J. Marcus, C. Marcenat, P. Szabó, Z. Hol, P. Samuely, B. W. Kang, H. Kim, H. Lee, H. Lee, and S. Lee, Phys. Rev. B 73, 224528 (2006) 10.1103/PhysRevB.73.224528.
T. Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara, and H. Takagi, Science. 294, 2518 (2001) 10.1126/science.1065068.
J. D. Fletcher, A. Carrington, P. Diener, P. Rodiere, J. P. Brison, R. Prozorov, T. Olheiser, and R. W. Giannetta, Phys. Rev. Lett. 98, 057003 (2007) 10.1103/PhysRevLett.98.057003.
Y. J. Uemura, G. M. Luke, B. J. Sternlieb, J. H. Brewer, J. F. Carolan, W. N. Hardy, R. Kadono, J. R. Kempton, R. F. KieA, S. R. Kreitzman, P. Mulhern, T. M. Riseman, D. L. Williams, B. X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A. W. Sleight, M. A. Subramanian, C. L. Chien, M. Z. Cieplak, G. Xiao, V. Y. Lee, and B. W. Statt, Phys. Rev. Lett. 62, 2317 (1989) 10.1103/PhysRevLett.62.2317.
A. J. Drew, F. L. Pratt, T. Lancaster, S. J. Blundell, P. J. Baker, R. H. Liu, G. Wu, X. H. Chen, I. Watanabe, and C. Bernhard, Phys. Rev. Lett. 101, 097010 (2008) 10.1103/PhysRevLett.101.097010.
A. Adamski, C. Krellner, and M. Abdel-Hafiez, Phys. Rev. B 96, 100503 (2017) 10.1103/PhysRevB.96.100503.
M. Abdel-Hafiez, M. Mito, K. Shibayama, S. Takagi, M. Ishizuka, A. N. Vasiliev, C. Krellner, and H. K. Mao, Phys. Rev. B 98, 094504 (2018)) 10.1103/PhysRevB.98.094504.
C. Ren, Z. Wang, H. Luo, H. Yang, L. Shan, and H. Wen, Phys. Rev. Lett. 101, 257006 (2008) 10.1103/PhysRevLett.101.257006.
H. Luetkens, H. Klauss, R. Khasanov, A. Amato, R. Klingeler, I. Hellmann, N. Leps, A. Kondrat, C. Hess, A. Kohler, G. Behr, J. Werner, and B. Buchner, Phys. Rev. Lett. 101, 097009 (2008) 10.1103/PhysRevLett.101.097009.
F. Manzano, A. Carrington, N. E. Hussey, S. Lee, A. Yamamoto, and S. Tajima, Phys. Rev. Lett. 88, 047002 (2002) 10.1103/PhysRevLett.88.047002.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.