stratospheric transport; age of air; transport trends; dynamical variability; long term trend; FTIR monitoring
Abstract :
[en] Abstract Total columns of the trace gases nitric acid (HNO3) and hydrogen chloride (HCl) are sensitive to variations in the lower stratospheric age of air, a quantity that describes transport time scales in the stratosphere. Analyses of HNO3 and HCl columns from the Network for the Detection of Atmospheric Composition Change panning 77°S to 79°N have detected changes in the extratropical stratospheric transport circulation from 1994 to 2018. The HNO3 and HCl analyses combined with the age of air from a simulation using the MERRA2 reanalysis show that the Southern Hemisphere lower stratosphere has become 1 month/decade younger relative to the Northern Hemisphere, largely driven by the Southern Hemisphere transport circulation. The analyses reveal multiyear anomalies with a 5- to 7-year period driven by interactions between the circulation and the quasi-biennial oscillation in tropical winds. This hitherto unrecognized variability is large relative to hemispheric transport trends and may bias ozone trend regressions.
Research Center/Unit :
Sphères - SPHERES
Disciplines :
Earth sciences & physical geography
Author, co-author :
Strahan, Susan E.
Smale, Dan
Douglass, Anne R.
Blumenstock, Thomas
Hannigan, James W.
Hase, Frank
Jones, Nicholas B.
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Notholt, Justus
Oman, Luke D.
Ortega, Ivan
Palm, Mathias
Prignon, Maxime ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abalos, M., Polvani, L., Calvo, N., Kinnison, D., Ploeger, F., Randel, W., & Solomon, S. (2019). New insights on the impact of ozone-depleting substances on the Brewer-Dobson circulation. Journal of Geophysical Research: Atmospheres, 124, 2435–2451. https://doi.org/10.1029/2018JD029301
Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Loewenstein, M., Jost, H., Podolske, J. R., Webster, C. R., Herman, R. L., Scott, D. C., Flesch, G. J., Moyer, E. J., Elkins, J. W., Dutton, G. S., Hurst, D. F., Moore, F. L., Ray, E. A., Romashkin, P. A., & Strahan, S. E. (2001). Mean ages of stratospheric air derived from in situ observations of CO, CH4, and N2O. Journal of Geophysical Research, 106(D23), 32,295–32,314. https://doi.org/10.1029/2001JD000465
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., Horinouchi, T., Jones, D. B. A., Kinnersley, J. S., Marquardt, C., Sato, K., & Takahashi, M. (2001). The quasi-biennial oscillation. Reviews of Geophysics, 39(2), 179–229. https://doi.org/10.1029/1999RG000073
Ball, W. T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., & Bourassa, A. (2018). Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery. Atmospheric Chemistry and Physics, 18, 1–15. https://doi.org/10.5194/acp-18-1379-2018
Butchart, N. (2014). The Brewer-Dobson circulation. Reviews of Geophysics, 52, 157–184. https://doi.org/10.1002/2013RG000448
Butchart, N., Cionni, I., Eyring, V., Shepherd, T. G., Waugh, D. W., Akiyoshi, H., Austin, J., Brühl, C., Chipperfield, M. P., Cordero, E., Dameris, M., Deckert, R., Dhomse, S., Frith, S. M., Garcia, R. R., Gettelman, A., Giorgetta, M. A., Kinnison, D. E., Li, F., Mancini, E., McLandress, C., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Sassi, F., Scinocca, J. F., Shibata, K., Steil, B., & Tian, W. (2010). Chemistry–climate model simulations of twenty-first century stratospheric climate and circulation changes. Journal of Climate, 23(20), 5349–5374. https://doi.org/10.1175/2010JCLI3404.1
Butchart, N., & Scaife, A. A. (2001). Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410(6830), 799–802. https://doi.org/10.1038/35071047
Chabrillat, S., Vigouroux, C., Christophe, Y., Engel, A., Errera, Q., Minganti, D., Monge-Sanz, B. M., Segers, A., & Mahieu, E. (2018). Comparison of mean age of air in five reanalyses using the BASCOE transport model. Atmospheric Chemistry and Physics, 18(19), 14,715–14,735. https://doi.org/10.5194/acp-18-14715-2018
De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., et al. (2018). The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmospheric Chemistry and Physics, 18, 4935–4964. https://doi.org/10.5194/acp-18-4935-2018
Douglass, A. R., Strahan, S. E., Oman, L. D., & Stolarski, R. S. (2017). Multi-decadal records of stratospheric composition and their relationship to stratospheric circulation change. Atmospheric Chemistry and Physics, 17, 12,081–12,096. https://doi.org/10.5194/acp-17-12081-2017
Elkins, J. W., & Dutton, G. S. (2009). Nitrous oxide and sulfur hexafluoride in ‘State of the Climate in 2008’. Bulletin of the American Meteorological Society, 90, S38–S39. https://doi.org/10.1175/bams-90-8-stateoftheclimate
Engel, A., Boenisch, H., Ullrich, M., Sitals, R., Membrive, O., Danis, F., & Crevoisier, C. (2017). Mean age of stratospheric air derived from AirCore observations. Atmospheric Chemistry and Physics, 17, 6825–6838. https://doi.org/10.5194/acp-17-6825-2017
Engel, A., Moebius, T., Boenisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S., & Moore, F. (2009). Age of stratospheric air unchanged within uncertainties over the past 30 years. Nature Geoscience, 2(1), 28–31. https://doi.org/10.1038/ngeo388
Eyring, V., Waugh, D. W., Bodeker, G. E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S. R., Boville, B. A., Braesicke, P., Brühl, C., & Butchart, N. (2007). Multimodel projections of stratospheric ozone in the 21st century. Journal of Geophysical Research, 112, D16303. https://doi.org/10.1029/2006jd008332
Fu, Q., Lin, P., Solomon, S., & Hartmann, D. L. (2015). Observational evidence of strengthening of the Brewer-Dobson circulation since 1980. Journal of Geophysical Research: Atmospheres, 120, 10,214–10,228. https://doi.org/10.1002/2015jd023657
Fu, Q., Solomon, S., Pahlavan, H. A., & Lin, P. (2019). Observed changes in Brewer-Dobson circulation for 1980-2018. Environmental Research Letters, 14, 1–8. https://doi.org/10.1088/1748-9326/ab4de7
Garcia, R. R., Randel, W. J., & Kinnison, D. E. (2011). On the determination of age of air trends from atmospheric trace species. Journal of the Atmospheric Sciences, 68(1), 139–154. https://doi.org/10.1175/2010JAS3527.1
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., & Wargan, K. (2017). The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). Journal of Climate, 30, 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
Gray, L. J., & Russell, J. M. III (1999). Interannual variability of trace gases in the subtropical winter stratosphere. Journal of the Atmospheric Sciences, 56(7), 977–993. https://doi.org/10.1175/1520-0469(1999)056<0977:IVOTGI>2.0.CO;2
Han, Y., Tian, W., Chipperfield, M. P., Zhang, J., Wang, F., Sang, W., Luo, J., Feng, W., Chrysanthou, A., & Tian, H. (2019). Attribution of the hemispheric asymmetries in trends of stratospheric trace gases inferred from Microwave Limb Sounder (MLS) measurements. Journal of Geophysical Research: Atmospheres, 124, 6283–6293. https://doi.org/10.1029/2018JD029723
Hegglin, M., & Shepherd, T. (2009). Large climate-induced changes in ultraviolet index and stratosphere-to troposphere ozone flux. Nature Geoscience, 2(10), 687–691. https://doi.org/10.1038/ngeo604
Karpechko, A. Y. & Maycock, A. C. (2019) Stratospheric ozone changes and climate In Scientific assessment of ozone depletion: 2018 (Global Ozone Research and Monitoring Project—Report No. 58). World Meteorological Organization.
Konopka, P., Ploeger, F., Tao, M., Birner, T., & Riese, M. (2015). Hemispheric asymmetries and seasonality of mean age of air in the lower stratosphere: Deep versus shallow branch of the Brewer-Dobson circulation. Journal of Geophysical Research: Atmospheres, 120, 1–14. https://doi.org/10.1002/2014jd022429
Livesey, N. J., Read, W. G., Wagner, P., Froidevaux, L., Lambert, A., Manney, G. L., Millán Valle, L. F., Pumphrey, H. C., Santee, M. L., Schwartz, M. J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Martinez, E., & Lay, R. R. (2018). Earth Observing System (EOS). Aura Microwave Limb Sounder (MLS). Version 4.2x level 2 data quality and description document (JPL D-33509 Rev D).
Mahieu, E., Chipperfield, M. P., Notholt, J., Reddmann, T., Anderson, J., Bernath, P. F., Blumenstock, T., Coffey, M. T., Dhomse, S. S., Feng, W., Franco, B., Froidevaux, L., Griffith, D. W. T., Hannigan, J. W., Hase, F., Hossaini, R., Jones, N. B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Russell, J. M. III, Schneider, M., Servais, C., Smale, D., & Walker, K. A. (2014). Recent northern hemisphere stratospheric HCl increase due to atmospheric circulation changes. Nature, 515(7525), 104–107. https://doi.org/10.1038/nature13857
Montzka, S. A., Dutton, G. S., Yu, P., Ray, E., Portmann, R. W., Daniel, J. S., Kuijpers, L., Hall, B. D., Mondeel, D., Siso, C., Nance, J. D., Rigby, M., Manning, A. J., Hu, L., Moore, F., Miller, B. R., & Elkins, J. W. (2018). An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature, 557(7705), 413–417. https://doi.org/10.1038/s41586-018-0106-2
Oman, L., Waugh, D. W., Pawson, S., Stolarski, R. S., & Newman, P. A. (2009). On the influence of anthropogenic forcings on changes in the stratospheric mean age. Journal of Geophysical Research, 114, D03105. https://doi.org/10.1029/2008jd010378
Oman, L. D., Plummer, D. A., Waugh, D. W., Austin, J., Scinocca, J. F., Douglass, A. R., Salawitch, R. J., Canty, T., Akiyoshi, H., Bekki, S., & Braesicke, P. (2010). Multimodel assessment of the factors driving stratospheric ozone evolution over the 21st century. Journal of Geophysical Research, 115, 1–21. https://doi.org/10.1029/2010jd014362
Orsolini, Y. J. (2001). Long-lived tracer patterns in the summer polar stratosphere. Geophysical Research Letters, 28(20), 3855–3858. https://doi.org/10.1029/2001GL013103
Ploeger, F., & Birner, T. (2016). T. Seasonal and inter-annual variability of lower stratospheric age of air spectra. Atmospheric Chemistry and Physics, 16, 10,195–10,213. https://doi.org/10.5194/acp-16-10195-2016
Ploeger, F., Legras, B., Charlesworth, E., Yan, X., Diallo, M., Konopka, P., Birner, T., Tao, M., Engel, A., & Riese, M. (2019). How robust are stratospheric age of air trends from different reanalyses? Atmospheric Chemistry and Physics, 6085–6105.
Polvani, L. M., Abalos, M., Garcia, R., Kinnison, D., & Randel, W. J. (2018). Significant weakening of Brewer-Dobson circulation trends over the 21st century as a consequence of the Montreal Protocol. Geophysical Research Letters, 45, 401–409. https://doi.org/10.1002/2017GL075345
Randel, W. J., & Newman, P. A. (1998). The stratosphere in the southern hemisphere. In D. J. Karoly, & D. G. Vincent (Eds.), Meteorology of the Southern Hemisphere (pp. 243–282). Boston, MA: American Meteorological Society.
Ray, E., Portmann, R. W., Yu, P., Daniel, J., Montzka, S. A., Dutton, G. S., Hall, B. D., Moore, F. L., & Rosenlof, K. H. (2020). The influence of the stratospheric quasi-biennial oscillation on trace gas levels at the Earth's surface. Nature Geoscience, 13(1), 22–27. https://doi.org/10.1038/s41561-019-0507-3
Schoeberl, M. R., Douglass, A. R., Polansky, B., Boone, C., Walker, K. A., & Bernath, P. (2005). Estimation of stratospheric age spectrum from chemical tracers. Journal of Geophysical Research, 110, D21303. https://doi.org/10.1029/2005jd006125
Stiller, G. P., Fierli, F., Ploeger, F., Cagnazzo, C., Funke, B., Haenel, F. J., Reddmann, T., Riese, M., & von Clarmann, T. (2017). Shift of subtropical transport barriers explains observed hemispheric asymmetry of decadal trends of age of air. Atmospheric Chemistry and Physics, 17, 11,177–11,192. https://doi.org/10.5194/acp-17-11177-2017
Stiller, G. P., von Clarmann, T., Haenel, F., Funke, B., Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., & López-Puertas, M. (2012). Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period. Atmospheric Chemistry and Physics, 12(7), 3311–3331. https://doi.org/10.5194/acp-12-3311-2012
Strahan, S. E., Douglass, A. R., & Newman, P. A. (2013). The contributions of chemistry and transport to low Arctic ozone in March 2011 derived from Aura MLS observations. Journal of Geophysical Research: Atmospheres, 118, 1563–1576. https://doi.org/10.1002/jgrd.50181
Strahan, S. E., Douglass, A. R., Newman, P. A., & Steenrod, S. D. (2014). Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery. Journal of Geophysical Research: Atmospheres, 119, 14,098–14,109. https://doi.org/10.1002/2014JD022295
Strahan, S. E., Douglass, A. R., Stolarski, R. S., Akiyoshi, H., Bekki, S., Braesicke, P., Butchart, N., Chipperfield, M. P., Cugnet, D., Dhomse, S., & Frith, S. M. (2011). Using transport diagnostics to understand chemistry climate model ozone simulations. Journal of Geophysical Research, 116, D17302. https://doi.org/10.1029/2010jd015360
Strahan, S. E., Oman, L. D., Douglass, A. R., & Coy, L. (2015). Modulation of Antarctic vortex composition by the quasi-biennial oscillation. Geophysical Research Letters, 42, 4216–4223. https://doi.org/10.1002/2015GL063759
Waugh, D. (2009). Atmospheric dynamics: The age of stratospheric air. Nature Geoscience, 2(1), 14–16. https://doi.org/10.1038/ngeo397
Waugh, D. W., & Hall, T. M. (2002). Age of stratospheric air: Theory, observations and models. Reviews of Geophysics, 40(4), 1010. https://doi.org/10.1029/2000rg000101
Aquila, V., Oman, L. D., Stolarski, R., Douglass, A. R., & Newman, P. A. (2013). The response of ozone and nitrogen dioxide to the eruption of Mt. Pinatubo at southern and northern midlatitudes. Journal of the Atmospheric Sciences, 70(3), 894–900. https://doi.org/10.1175/JAS-D-12-0143.1
Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Frith, S., Labow, G., Partyka, G., Pawson, S., Reale, O.Schubert, S. D., & Suarez, M. (2015). MERRA-2: Initial evaluation of the climate. NASA Technical Report Series on Global Modeling and Data Assimilation. (NASA/TM–2015-104606, Vol. 43).
Hase, F., Blumenstock, T., & Paton-Walsh, C. (1999). Analysis of the instrumental line shape of high-resolution Fourier transform IR spectrometers with gas cell measurements and new retrieval software. Applied Optics, 38(15), 3417–3422. https://doi.org/10.1364/AO.38.003417
Hase, F., Hannigan, J. W., Coffey, M. T., Goldman, A., Höpfner, M., Jones, N. B., & Wood, S. W. (2004). Intercomparison of retrieval codes used for the analysis of high-resolution, groundbased FTIR measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 7, 25–52. https://doi.org/10.1016/j.jqsrt.2003.12.008
Kohlhepp, R., Ruhnke, R., Chipperfield, M. P., De Maziere, M., Notholt, J., Barthlott, S., Batchelor, R. L., Blatherwick, R. D., Blumenstock, T., Coffey, M. T., & Demoulin, P. (2012). Observed and simulated time evolution of HCl, ClONO2, and HF total column abundances. Atmospheric Chemistry and Physics, 12(7), 3527–3556. https://doi.org/10.5194/acp-12-3527-2012
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J. P., Schlager, H., Barnes, J. E., Antuña-Marrero, J. C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., & Meland, B. (2016). Stratospheric aerosol—Observations, processes, and impact on climate. Reviews of Geophysics, 54, 278–335. https://doi.org/10.1002/2015RG000511
Pougatchev, N. S., Connor, B. J., & Rinsland, C. P. (1995). Infrared measurements of the ozone vertical distribution above Kitt Peak. Journal of Geophysical Research, 100(D8), 16,689–16,697. https://doi.org/10.1029/95JD01296
Rodgers, C. D. (2000). Inverse methods for atmospheric sounding—Theory and practice, Series on Atmospheric Oceanic and Planetary Physics (Vol. 2). London: World Scientific Publishing Co. Pte. Ltd. https://doi.org/10.1142/3171
Ronsmans, G., Langerock, B., Wespes, C., Hannigan, J. W., Hase, H., Kerzenmacher, T., Mahieu, E., Schneider, M., Smale, D., Hurtmans, D., & De Mazière, M. (2016). First characterization and validation of FORLI-HNO3 vertical profiles retrieved from IASI/Metop. Atmospheric Measurement Techniques, 9, 4783–4801. https://doi.org/10.5194/amt-9-4783-2016
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.