Abdallah, D. B.; Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, Sfax, 3018, Tunisia
Krier, F.; Université de Lille, INRA, Université d’Artois, Université du Littoral-Côte d’Opale, EA 7394 - ICV-Institut Charles Viollette, Lille, F-59000, France
Jacques, Philippe ; Université de Liège - ULiège > Département GxABT > Microbial, food and biobased technologies
Tounsi, S.; Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, Sfax, 3018, Tunisia
Frikha-Gargouri, O.; Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, Sfax, 3018, Tunisia
Language :
English
Title :
Agrobacterium tumefaciens C58 presence affects Bacillus velezensis 32a ecological fitness in the tomato rhizosphere
Publication date :
2020
Journal title :
Environmental Science and Pollution Research
ISSN :
0944-1344
eISSN :
1614-7499
Publisher :
Springer
Volume :
27
Issue :
22
Pages :
28429-28437
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
MHESR - Ministry of Higher Education and Scientific Research
Abarca-Grau AM, Penyalver R, López MM, Marco-Noales E (2011) Pathogenic and non-pathogenic Agrobacterium tumefaciens, A. rhizogenes and A. vitis strains form biofilms on abiotic as well as on root surfaces. Plant Pathol 60:416–425. 10.1111/j.1365-3059.2010.02385.x DOI: 10.1111/j.1365-3059.2010.02385.x
Abdelly C, Lachaâl M, Grignon C, Soltani A, Hajji M (1995) Association épisodique d’halophytes strictes et de glycophytes dans un écosystème hydromorphe salé en zone semi-aride. Agronomie 15:557–568 https://hal.archives-ouvertes.fr/hal-00885751 DOI: 10.1051/agro:19950905
Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P (2018) Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Pollut Res 25:29910–29920. 10.1007/s11356-017-0469-1 DOI: 10.1007/s11356-017-0469-1
Ben Abdallah D, Frikha-Gargouri O, Tounsi S (2015) Bacillus amyloliquefaciens strain 32a as a source of lipopeptides for biocontrol of Agrobacterium tumefaciens strains. J Appl Microbiol 119:196–207. 10.1111/jam.12797 DOI: 10.1111/jam.12797
Ben Abdallah D, Frikha-Gargouri O, Tounsi S (2018a) Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biol Control 124:61–67. 10.1016/j.biocontrol.2018.01.013 DOI: 10.1016/j.biocontrol.2018.01.013
Ben Abdallah D, Tounsi S, Gharsallah H, Hammami A, Frikha-Gargouri O (2018b) Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens. Environ Sci Pollut Res 25:36518–36529. 10.1007/s11356-018-3570-1 DOI: 10.1007/s11356-018-3570-1
Bliss FA, Almedhi AA, Dandekar AM, Schuerman PL, Bellaloui NI (1999) Crown gall resistance in accessions of Prunus species. HortScience 34:326–330 DOI: 10.21273/HORTSCI.34.2.326
Borriss R (2015) Towards a new generation of commercial microbial disease control and plant growth promotion product. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 329–337
Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world-pesticides use and management. InTech, pp 273–302
Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295. 10.1111/1751-7915.12238 DOI: 10.1111/1751-7915.12238
Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front Microbiol 6:780. 10.3389/fmicb.2015.00780 DOI: 10.3389/fmicb.2015.00780
Debois D, Jourdan E, Smargiasso N, Thonart P, De Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86:4431–4438. 10.1021/ac500290s DOI: 10.1021/ac500290s
DeCoste NJ, Gadkar VJ, Filion M (2010) Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry. Can J Microbiol 56:906–915. 10.1139/W10-080 DOI: 10.1139/W10-080
Etalo DW, Jeon JS, Raaijmakers JM (2018) Modulation of plant chemistry by beneficial root microbiota. Nat Prod Rep 35:398–409. 10.1039/c7np00057j DOI: 10.1039/c7np00057j
Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q (2017) Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front Microbiol 8:1973. 10.3389/fmicb.2017.01973 DOI: 10.3389/fmicb.2017.01973
Frikha-Gargouri O, Ben Abdallah D, Bhar I, Tounsi S (2017) Antibiosis and bmyB gene presence as prevalent traits for the selection of efficient Bacillus biocontrol agents against crown gall disease. Front Plant Sci 8:1363. 10.3389/fpls.2017.01363 DOI: 10.3389/fpls.2017.01363
Hammami I, Rhouma A, Jaouadi B, Rebai A, Nesme X (2009) Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett Appl Microbiol 48:253–260. 10.1111/j.1472-765X.2008.02524.x DOI: 10.1111/j.1472-765X.2008.02524.x
Hoefler BC, Gorzelnik KV, Yang JY, Hendricks N, Dorrestein PC, Straight PD (2012) Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition. Proc Natl Acad Sci 109:13082–13087. 10.1073/pnas.1205586109 DOI: 10.1073/pnas.1205586109
Hossain MJ, Ran C, Liu K, Ryu CM, Rasmussen-Ivey CR, Williams MA, Hassan MK, Choi SK, Jeong H, Newman M, Kloepper JW, Liles MR (2015) Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum. Front Plant Sci 6:631. 10.3389/fpls.2015.00631 DOI: 10.3389/fpls.2015.00631
Jamali F, Sharifi-Tehrani A, Lutz MP, Maurhofer M (2009) Influence of host plant genotype, presence of a pathogen, and coinoculation with Pseudomonas fluorescens strains on the rhizosphere expression of hydrogen cyanide-and 2, 4-diacetylphloroglucinol biosynthetic genes in P. fluorescens biocontrol strain CHA0. Microb Ecol 57:267–275. 10.1007/s00248-008-9471-y DOI: 10.1007/s00248-008-9471-y
Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456–468. 10.1094/MPMI-22-4-0456 DOI: 10.1094/MPMI-22-4-0456
Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microbe Interact 19:1121–1126. 10.1094/MPMI-19-1121 DOI: 10.1094/MPMI-19-1121
Krimi Z, Petit A, Mougel C, Dessaux Y, Nesme X (2002) Seasonal fluctuations and long-term persistence of pathogenic populations of Agrobacterium spp. in soils. Appl Environ Microbiol 68:3358–3365. 10.1128/aem.68.7.3358-3365.2002 DOI: 10.1128/aem.68.7.3358-3365.2002
Liu Y, Zhang N, Qiu M, Feng H, Vivanco JM, Shen Q, Zhang R (2014) Enhanced rhizosphere colonization of beneficial Bacillus amyloliquefaciens SQR9 by pathogen infection. FEMS Microbiol Lett 353:49–56. 10.1111/1574-6968.12406 DOI: 10.1111/1574-6968.12406
Liu Y, Chen L, Wu G, Feng H, Zhang G, Shen Q, Zhang R (2017) Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum. Mol Plant-Microbe Interact 30:53–62. 10.1094/MPMI-07-16-0131-R DOI: 10.1094/MPMI-07-16-0131-R
Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept Sci 104:129–147. 10.1002/bip.22630 DOI: 10.1002/bip.22630
Neveu B, Labbé C, Bélanger RR (2007) GFP technology for the study of biocontrol agents in tritrophic interactions: a case study with Pseudozyma flocculosa. J Microbiol Methods 68:275–281. 10.1016/j.mimet.2006.08.012 DOI: 10.1016/j.mimet.2006.08.012
Nihorimbere V, Fickers P, Thonart P, Ongena M (2009) Ecological fitness of Bacillus subtilis BGS3 regarding production of the surfactin lipopeptide in the rhizosphere. Environ Microbiol Rep 1:124–130. 10.1111/j.1758-2229.2009.00017.x DOI: 10.1111/j.1758-2229.2009.00017.x
Nihorimbere V, Cawoy H, Seyer A, Brunelle A, Thonart P, Ongena M (2012) Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiol Ecol 79:176–191. 10.1111/j.1574-6941.2011.01208.x DOI: 10.1111/j.1574-6941.2011.01208.x
Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. 10.1016/j.tim.2007.12.009 DOI: 10.1016/j.tim.2007.12.009
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. 10.1111/j.1462-2920.2006.01202.x DOI: 10.1111/j.1462-2920.2006.01202.x
Pertot I, Puopolo G, Hosni T, Pedrotti L, Jourdan E, Ongena M (2013) Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. FEMS Microbiol Ecol 86:505–519. 10.1111/1574-6941.12177 DOI: 10.1111/1574-6941.12177
Qiao JQ, Wu HJ, Huo R, Gao XW, Borriss R (2014) Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem Biol Technol Agric 1:12. 10.1186/s40538-014-0012-2 DOI: 10.1186/s40538-014-0012-2
Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. 10.1111/j.1574-6976.2010.00221.x DOI: 10.1111/j.1574-6976.2010.00221.x
Rhouma A, Bouri M, Boubaker A, Nesme X (2008) Potential effect of rhizobacteria in the management of crown gall disease caused by Agrobacterium tumefaciens biovar 1. J Plant Pathol 90:517–526. 10.4454/jpp.v90i3.696 DOI: 10.4454/jpp.v90i3.696
Wu L, Wu HJ, Qiao J, Gao X, Borriss R (2015) Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Front Microbiol 6:1395. 10.3389/fmicb.2015.01395 DOI: 10.3389/fmicb.2015.01395
Yakabe LE, Parker SR, Kluepfel DA (2010) Effect of pre-plant soil fumigants on Agrobacterium tumefaciens, pythiaceous species, and subsequent soil recolonization by A. tumefaciens. Crop Prot 29:583–590. 10.1016/j.cropro.2010.01.001 DOI: 10.1016/j.cropro.2010.01.001
Zeriouh H, Romero D, García-Gutiérrez L, Cazorla FM, de Vicente A, Pérez-García A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant-Microbe Interact 24:1540–1552. 10.1094/MPMI-06-11-0162 DOI: 10.1094/MPMI-06-11-0162
Zihalirwa Kulimushi P, Argüelles Arias A, Franzil L, Steels S, Ongena M (2017) Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis. Front Microbiol 8:850. 10.3389/fmicb.2017.00850 DOI: 10.3389/fmicb.2017.00850