Adami, C., & Hintze, A. (2013). Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything. Nature Communications, 4(2193), 1–8.
Ban, G. Y., & Keskin, N. B. (2017). Personalized dynamic pricing with machine learning. SSN. 10.2139/ssrn.2972985. Retrieved January 21, 2019. DOI: 10.2139/ssrn.2972985
Belleflamme, P., Lam, W., & Vergote, W. (2019). Price discrimination and dispersion under asymmetric profiling of customers, CESifo Working paper no. 7964. https://ssrn.com/abstract=3498721.
Belleflamme, P., & Peitz, M. (2015). Industrial organization market and strategies (2nd ed.). Cambridge UK: Cambridge University Press. DOI: 10.1017/CBO9781107707139
Belleflamme, P., & Vergote, W. (2016). Monopoly price discrimination and privacy: The hidden cost of hiding. Economic Letters, 149, 141–144. DOI: 10.1016/j.econlet.2016.10.027
Bergemann, D., Brooks, B., & Morris, S. (2015). The limit of price discrimination. Amercian Economic Review, 105(3), 921–957. DOI: 10.1257/aer.20130848
Blockx, J. (2018). Antitrust in digital markets in the EU: Policing price bots. In J. M. Veenbrink, C. S. Rusu, & A. Looijestein-Clearie (Eds.), digital markets in the EU (pp. 75–89). Nijmegen: Wolf Publishers.
Bounie, D., Dubus, A., & Waelbroeck, P. (2018). Selling strategic information in digital competitive markets, MimeoTelecom Paris Tech.
Brown, Z. Y., & MacKay, A. (2019) Competition in pricing algorithms. Harvard Business School Working Paper, No. 20-067, November 2019.
Cahn, A., Alfeld, S., Barford, P., & Muthukrishnan, S. (2016). An empirical study of web cookies. In: Proceedings of the 25th international conference on world wide web (pp. 891–901). International World Wide Web Conferences Steering Committee.
Calvano, E., Calzolari, G., Denicolo, V. & Pastorello, S. (2018a). Algorithmic pricing: What implications for competition policy? SSRN. 10.2139/ssrn.3209781. Retrieved January 21, 2019. DOI: 10.2139/ssrn.3209781
Calvano, E., Calzolari, G., Denicolo, V. & Pastorello, S. (2018b). Artificial Intelligence, algorithmic pricing and collusion. SSRN. 10.2139/ssrn.3304991. Retrieved January 21, 2019. DOI: 10.2139/ssrn.3304991
Cavallo, A. (2018). More Amazon effects: Online competition and pricing behaviors. National Bureau of Economic Research. https://www.nber.org/papers/w25138. Retrieved January 21, 2019.
Chen, X., Owen, Z., Pixton, C., & Simchi-Levi, D. (2015). A statistical learning approach to personalization in revenue management. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2579462. Retrieved January 21, 2019.
Colombo, S. (2010). Product differentiation, price discrimination and collusion. Research in Economics, 64(1), 18–27. DOI: 10.1016/j.rie.2009.10.003
Crandall, J. W., Oudah, M., Ishowo-Oloko, F., Abdallah, S., Bonnefon, J. F., et al. (2018). Cooperating with machines. Nature Communications, 9(233), 1–12.
d’Aspremont C., & Gabszewicz J. J. (1986). On the stability of collusion. In: J. E. Stiglitz, G. F. Mathewson (Eds.), New developments in the analysis of market structure. International Economic Association Series (pp 243–264). London: Palgrave Macmillan.
DG Justice. (2018). EU Publications. https://publications.europa.eu/en/publication-detail/-/publication/ed9ce056-c2cf-11e8-9424-01aa75ed71a1/language-en/format-PDF. Retrieved January 21, 2019.
Dubé, J. P., & Misra, S. (2018). Scalable price targeting. Wharton (UPenn). https://marketing.wharton.upenn.edu/wp-content/uploads/2018/01/01-25-2018-Misra-Sanjog-PAPER-targeted_pricing.pdf. Retrieved January 21, 2019.
Ezrachi, A. & Stucke, M. (2015). Artificial intelligence & collusion: When computers inhibit competition. SSRN. https://doi.org/10.2139/ssrn.2591874. Retrieved January 21, 2019.
Ezrachi, A., & Stucke, M. (2016). Virtual competition: The promise and perils of the algorithm-driven economy. Cambridge: Harvard University Press. DOI: 10.4159/9780674973336
Ezrachi, A. & Stucke, M. (2017). Algorithmic collusion: Problems and counter-measures. OECD. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DAF/COMP/WD%282017%2925&docLanguage=En. Retrieved March 25, 2019.
Fischer, C., & Normann, H. T. (2019). Collusion and bargaining in asymmetric Cournot duopoly—An experiment. European Economic Review, 111, 360–379. DOI: 10.1016/j.euroecorev.2018.10.005
Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., & Mordatch, I. (2018). Learning with opponent-learning awareness. In Proceedings of the 17th international conference on autonomous agents and multiagent systems (pp. 122–130). International Foundation for Autonomous Agents and Multiagent Systems.
Fonseca, M., & Normann, H. T. (2012). Explicit vs. tacit collusion—The impact of communication in oligopoly experiments. European Economic Review, 56(8), 1759–1772. DOI: 10.1016/j.euroecorev.2012.09.002
Garces-Tholon, E., Never, D., & Seabright, P. (2009). The ups and downs of the theory of collective dominance: Using game theory for merger policy. In B. Lyons (Ed.), Cases in European competition policy: The economic analysis. Cambridge: Cambridge University Press.
Ghose, A., & Yang, S. (2009). An empirical analysis of search engine advertising: Sponsored search in electronic markets. Management Science, 55(10), 1605–1622. DOI: 10.1287/mnsc.1090.1054
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Hannak, A., Soeller, G., Lazer, D., Mislove, A., & Wilson, C. (2014). Measuring price discrimination and steering on e-commerce web sites. In Proceedings of the 2014 conference on internet measurement conference (pp. 305–318). ACM.
Harrington, J. (2018). Developing competition law for collusion by autonomous artificial agents. Journal of Competition Law & Economics, 14(3), 331–363. DOI: 10.1093/joclec/nhy016
Helfrich, M., & Herweg, F. (2016). Fighting collusion by permitting price discrimination. Economic Letters, 145, 148–151. DOI: 10.1016/j.econlet.2016.05.024
Huck, S., Normann, H. T., & Oechssler, J. (2004). Two are few and four are many: Number effects in experimental oligopolies. Journal of Economic Behavior & Organization, 53(4), 435–446. DOI: 10.1016/j.jebo.2002.10.002
Ittoo, A., & Petit, N. (2017). Algorithmic pricing agents and tacit collusion: A technological perspective. SSRN. 10.2139/ssrn.3046405. Retrieved March 26, 2019. DOI: 10.2139/ssrn.3046405
Izquierdo S. S., & Izquierdo L. R. (2015). The “Win-Continue, Lose-Reverse” Rule in Cournot Oligopolies: Robustness of collusive outcomes. In F. Amblard, F. Miguel, A. Blanchet, B. Gaudou (Eds.), Advances in artificial economics (pp. 33–44). Berlin: Springer.
Klein, T. (2018). Autonomous algorithmic collusion: Q-learning under sequential pricing. SSRN. 10.2139/ssrn.3195812. Retrieved January 21, 2019. DOI: 10.2139/ssrn.3195812
Lee, S. I., Lee, H., Abbeel, P., & Ng, A. Y. (2006). Efficient L1 regularized logistic regression. AAAI. http://www.aaai.org/Papers/AAAI/2006/AAAI06-064.pdf. Retrieved January 21, 2019.
Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., & Graepel, T. (2017). Multi-agent reinforcement learning in sequential social dilemmas. In Proceedings of the 16th conference on autonomous agents and multiagent systems (pp. 464–473). International Foundation for Autonomous Agents and Multiagent Systems.
Lerer, A., & Peysakhovich, A. (2017). Maintaining cooperation in complex social dilemmas using deep reinforcement learning. arXiv. https://arxiv.org/abs/1707.01068. Retrieved January 21, 2019.
Liu, Q., & Serfes, K. (2004). Quality of information and oligopolistic price discrimination. Journal of Economics and Management Strategy, 13(4), 671–702. DOI: 10.1111/j.1430-9134.2004.00028.x
Liu, Q., & Serves, K. (2007). Market segmentation and collusive behavior. International Journal of Industrial Organization, 25, 355–378. DOI: 10.1016/j.ijindorg.2006.05.004
Lopez-Feldman. (2012). Introduction to contingent valuation using STATA. MPRA. https://mpra.ub.uni-muenchen.de/41018/2/MPRA_paper_41018.pdf. Retrieved January 1, 2020.
Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P., & Mordatch, I. (2017). Multi-agent actor-critic for mixed cooperative-competitive environments. In Advances in neural information processing systems (pp. 6379–6390).
Competition and Markets Authority Report. (2018). Pricing algorithms. competition and markets authority (CMA). https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/746353/Algorithms_econ_report.pdf. Retrieved January 21, 2019.
Massarotto, G. (2019). From digital to blockchain markets: What role for antitrust and regulation. SSRN. 10.2139/ssrn.3323420. Retrieved March 27, 2019. DOI: 10.2139/ssrn.3323420
Miklós-Thal, J., & Tucker, C. (2019). Collusion by algorithm: Does better demand prediction facilitate coordination between sellers. Management Science. 10.1287/mnsc.2019.3287. DOI: 10.1287/mnsc.2019.3287
Montes, R., Sand-Zantman, W., & Valletti, T. (2018). The value of personal information in online markets with endogenous privacy. Management Science (in press).
Motta, M. (2004). Competition policy theory and practice. Cambridge: Cambridge University Press.
Ohlhausen, M. (2017). Should we fear the things that go beep in the night. FTC. https://www.ftc.gov/system/files/documents/public_statements/1220893/ohlhausen_-_concurrences_5-23-17.pdf. Retrieved 26 March 2019.
Peysakhovich, A., & Lerer, A. (2017). Prosocial learning agents solve generalized stag hunts better than selfish ones. In Proceedings of the 17th international conference on autonomous agents and multiagent systems (pp. 2043–2044). International Foundation for Autonomous Agents and Multiagent Systems.
Rana, R., & Oliveira, F. S. (2015). Dynamic pricing policies for interdependend perishable products or services using reinforcement learning. Expert Systems with Applications, 42, 426–436. DOI: 10.1016/j.eswa.2014.07.007
Reinartz, W., Haucap, J., Wiegand, N., & Hunold, M. (2017). Price differentiation and dispersion in retailing. IFH-Förderer. https://www.marketing.uni-koeln.de/sites/marketingarea/user_upload/Price_Differentiation_and_Dispersion_in_Retailing_Whitepaper_Einzelseiten_Version_1_ohne_letzte_Seite.pdf. Retrieved January 21, 2019.
Schwalbe, U. (2019). Algorithms, machine learning, and collusion. Journal of Competition Law & Economics, 14(4), 568–607. DOI: 10.1093/joclec/nhz004
Shiller, B. R. (2014). First-degree price discrimination using big data. Federal Trade Commission. https://www8.gsb.columbia.edu/faculty-research/sites/faculty-research/files/finance/Industrial/Ben%20Shiller%20–%20Nov%202014_0.pdf. Retrieved January 21, 2019.
Stole, L. (2003). Price discrimination and imperfect competition. Handbook of Industrial Organization, 3, 34–47.
Suetens, S., & Potters, J. (2007). Bertrand colludes more than Cournot. Journal of Experimental Economics, 10, 71–77. DOI: 10.1007/s10683-006-9132-2
Tan, M. (1993). Multi-agent reinforcement learning: Independent versus cooperative agents. In Proceedings of the tenth international conference on international conference on machine learning (ICML’93).
Tesauro, G., & Kephart, J. O. (2002). Pricing in agent economies using multi-agent Q-learning. Autonomous Agents and Multi-Agent Systems, 5(3), 289–304. DOI: 10.1023/A:1015504423309
Thisse, J., & Vives, X. (1988). On the strategic choice of spatial price policy. American Economic Review, 78(1), 122–137.
Townley, C., Morrison, E., & Yeung, K. (2017). Big data and personalized price discrimination in EU competition law. Yearbook of European Law, 36, 683–748. DOI: 10.1093/yel/yex015
Van Cleynenbreugel, P. (2020). Article 101 TFEU’s association of undertakings notion and its surprising potential to help distinguish acceptable from unacceptable algorithmic collusion. Antitrust Bulletin. 10.1177/0003603X20929116. DOI: 10.1177/0003603X20929116
Van Uytsel, S. (2018). Artificial intelligence and collusion: A literature overview. In M. Corrales, M. Fenwick, N. Forgo (Eds), Robotics, AI and the future of law (pp. 155–182). Singapore: Springer.
Varian, Hal R. (2009). Online ad auctions. American Economic Review, 99(2), 430–434. DOI: 10.1257/aer.99.2.430
Waltman, L., & Kaymak, U. (2008). Q-learning agents in a Cournot oligopoly model. Journal of Economic Dynamics and Control, 32(10), 3275–3293. DOI: 10.1016/j.jedc.2008.01.003
Woodcock, R. (2019). Personalized pricing as monopolization. Connecticut Law Review 51: Forthcoming. https://ssrn.com/abstract=2972369.
Zhou, N., Zhang, L., Li, S., & Wang, Z. (2018). Algorithmic collusion in cournot duopoly market: Evidence from experimental economics. arXiv. https://arxiv.org/abs/1802.08061. Retrieved January 21, 2019.