Comparison of optical indicators for potato crop nitrogen status assessment including novel approaches based on leaf fluorescence and flavonoid content
Ben Abdallah, Feriel; Goffart, Jean Pierre; Philippe, William
2018 • In Journal of Plant Nutrition, 41 (20), p. 2705-2728
[en] Some phenolic compounds are proposed as good indicators of crop
nitrogen status (CNS). This research compared the use of leaf flavonoid
content (LFC) as a potential indicator for evaluating potato CNS with other
recognized indicators linked to leaf chlorophyll content (LCC). Three-year
trials were conducted in Belgium on two potato cultivars including
increasing nitrogen rates. Optical sensors (Dualex, Multiplex, Hydro
N-tester, Cropscan) were used to evaluate LFC and/or LCC. Plant tissue
samples were analyzed to calculate the biomass nitrogen concentration
and the nitrogen nutrition index. The indicators were evaluated based on
four criteria: the sensitivity, the earliness of the diagnosis, the accuracy,
and the specificity. Apart from the low specificity to nitrogen, which can
be improved by the use of a within-field reference plot, the LFC (combined
with LCC or individually) matched the required criteria and could be
suggested as a valuable indicator for assessing potato CNS.
Goffart, Jean Pierre; Centre wallon de Recherches Agronomiques
Philippe, William; entre wallon de Recherches Agronomiques
Language :
English
Title :
Comparison of optical indicators for potato crop nitrogen status assessment including novel approaches based on leaf fluorescence and flavonoid content
Publication date :
2018
Journal title :
Journal of Plant Nutrition
ISSN :
0190-4167
Publisher :
Marcel Dekker, United States - New York
Volume :
41
Issue :
20
Pages :
2705-2728
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
PotFluo
Funders :
SPW Agriculture, Ressources naturelles et Environnement - Service Public de Wallonie. Agriculture, Ressources naturelles et Environnement
Agati, G., L., Foschi, N., Grossi, L., Guglielminetti, Z. G., Cerovic, and M., Volterrani. 2013. Fluorescence-based versus reflectance proximal sensing of nitrogen content in Paspalum vaginatum and Zoysia matrella turfgrasses. European Journal of Agronomy 45:39–51. doi.org/10.1016/j.eja.2012.10.011
Ben Abdallah, F., W., Philippe, and J. P., Goffart. 2016a. Utilisation de la fluorescence chlorophyllienne pour l’évaluation du statut azoté des cultures (synthèse bibliographique). Biotechnology, agronomy. Society and Environment 20 (1):83–93. http://popups.ulg.be/1780-4507/index.php?id=12627
Ben Abdallah, F., M., Olivier, J. P., Goffart, and O., Minet. 2016b. Establishing the nitrogen dilution curve for potato cultivar bintje in Belgium. Potato Research 59 (3):241–58. doi:10.1007/s11540-016-9331-y
Ben Ghozlen, N., Z. G., Cerovic, C., Germain, S., Toutain, and G., Latouche. 2010. Non-destructive optical monitoring of grape maturation by proximal sensing. Sensor 10 (11):10040–68. doi:10.3390/s101110040
Bilger, W., M., Veit, L., Schreiber, and U., Schreiber. 1997. Measurement of leaf epidermal transmittance of UV radiation by chlorophyll fluorescence. Physiologia Plantarum 101 (4):754–63. doi:10.1111/j.1399-3054.1997.tb01060.x
Buschmann, C. 2007. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynthesis Research 92 (2):261–71. doi:10.1007/s11120-007-9187-8
É.Cadet,. 2008. Détection et discrimination des carences en N, P et K par la fluorescence induite par UV chez le tournesol nain (Helianthus annuus, “Sunspot”). PhD diss., Université du Québec à Trois-Rivières
Cartelat, A., Z. G., Cerovic, Y., Goulas, S., Meyer, C., Lelarge, J.-L., Prioul, A., Barbottin, M.-H., Jeuffroy, P., Gate, G., Agati, and I., Moya. 2005. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Research 91 (1):35–49. doi:10.1016/j.fcr.2004.05.002
Cerovic, Z. G., G., Masdoumier, N., Ben Ghozlen, and G., Latouche. 2012. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoid. Physiologia Plantarum 146 (3):251–60. doi:10.1111/j.1399-3054.2012.01639.x
Cerovic, Z. G., A., Cartelat, Y., Goulas, and S., Meyer. 2005. In-the-field assessment of wheat-leaf polyphenolics using the new optical leaf-clip Dualex. In Precision agriculture 05, ed. J. V. Stafford, 243–50. Wageningen: Wageningen Academic Publishers
Cerovic, Z. G., N., Ben Ghozlen, C., Milhade, M., Obert, S., Debuisson, and M., Le Moigne. 2015. Non-destructive diagnostic test for nitrogen nutrition of grapevine (Vitis vinifera L.) based on Dualex leaf-clip measurements in the field. Journal of Agricultural and Food Chemistry 63 (14):3669–80. doi:10.1021/acs.jafc.5b00304
Confalonieri, R., L., Paleari, E., Movedi, V., Pagani, F., Orlando, M., Foi, M., Barbieri, M., Pesenti, O., Cairati, M. S., La Sala, et al. 2015. Improving in vivo plant nitrogen content estimates from digital images: trueness and precision of a new approach as compared to other methods and commercial devices. Biosystems Engineering 135:21–30. doi:10.1016/j.biosystemseng.2015.04.013
Daughtry, C. S. T., C. L., Walthall, M. S., Kim, E. B., De Colstoun, and J. E., McMurtrey. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74 (2):229–39. doi:10.1016/S0034-4257(00)00113-9
Fortier, E., Y., Desjardins, N., Tremblay, C., Bélec, and M., Côté. 2010. Influence of irrigation and nitrogen fertilization on broccoli polyphenolics concentration. Acta Horticulturae 856 (856):55–62. doi:10.17660/ActaHortic.2010.856.6
Froidmont, E., P., Mayeres, P., Picron, A., Turlot, V., Planchon, and D., Stilmant. 2013. Association between age at first calving, year and season of first calving and milk production in holstein cows. Animal 7 (04):665–72. doi:10.1017/S1751731112001577
Gianquinto, G., J. P., Goffart, M., Olivier, G., Guarda, M., Colauzzi, L., Dalla Costa, G., Delle Vedove, J., Vos, and D. K. L., MacKerron. 2004. The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Research 47 (1-2):35–80. doi:10.1007/BF02731970
Gitelson, A. A., and M. N., Merzlyak. 1998. Remote sensing of chlorophyll concentration in higher plant leaves. Advances in Space Research 22 (5):689–92. doi:10.1016/S0273-1177(97)01133-2
Goffart, J. P., M., Olivier, and M., Frankinet. 2008. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: Past–present–future. Potato Research 51 (3-4):355–83. doi:10.1007/s11540-008-9118-x
J.P.Goffart, L.Van Den Wyngaert, D.Buffet, A.Leonard, and P.Defourny. 2010. SPOT 5 multispectral data potentialities to monitor potato crop nitrogen status at specified field scale. Abstract paper presented at 10th International Conference on Precision Agriculture. Denver. Colorado. USA. July 18–21. 2010
Goffart, J. P., M., Abras, and F., Ben Abdallah. 2013. Gestion de la fertilisation azotée des cultures de plein champ. Perspectives d’amélioration de l’efficience d’utilisation de l’azote sur base du suivi du statut azoté de la biomasse aérienne. Biotechnology, agronomy. Society and Environment 17 (1):221–30. http://popups.ulg.ac.be/1780-4507/index.php?id=9703
Goulas, Y., Z. G., Cerovic, A., Cartelat, and I., Moya. 2004. Dualex: a new instrument for field measurements of epidermal UV-absorbance by chlorophyll fluorescence. Applied Optics 43 (23):4488–96. doi:10.1364/AO.43.004488
Guiot, J., J. P., Goffart, and J. P., Destain. 1993. Le dosage des nitrates dans le sol. Bulletin Des Recherches Agronomiques De Gembloux 27 (1):61–74
Lewis, R. J., and S. L., Love. 1994. Potato genotypes differ in petiole nitrate-nitrogen concentrations overtime. HortScience 29:175–9
Long, C. M., S. S., Snapp, D. S., Douches, and R. W., Chase. 2004. Tuber yield, storability, and quality of Michigan cultivars in response to nitrogen management and seedpiece spacing. American Journal of Potato Research 81 (5):347–57. doi:10.1007/BF02870181
Meyer, S., Z. G., Cerovic, Y., Goulas, P., Montpied, S., Demotes-Mainard, L. P. R., Bidel, I., Moya, and E., Dreyer. 2006. Relationships between optically assessed polyphenols and chlorophyll contents, and leaf mass per area ratio in woody plants: a signature of the carbon–nitrogen balance within leaves?. Plant, Cell and Environment 29 (7):1338–48. doi:10.1111/j.1365-3040.2006.01514.x
Mittelstraß, K., D., Treutter, M., Pleßl, W., Heller, E. F., Elstner, and I., Heiser. 2006. Modification of primary and secondary metabolism of potato plants by nitrogen application differentially affects resistance to Phytophthora infestans and Alternaria solani. Plant Biology 8:653–661
Peng, S., F. V., García, R. C., Laza, and K. G., Cassman. 1993. Adjustment for specific leaf weight improves chlorophyll meter’s estimate of rice leaf nitrogen concentration. Agronomy Journal 85 (5):987–90. doi:10.2134/agronj1993.00021962008500050005x
Pryseley, A., K., Mintiens, K., Knapen, Y., Van der Stede, and G., Molenberghs. 2010. Estimating precision, repeatability, and reproducibility from gaussian and non-Gaussian Data: a mixed models approach. Journal of Applied Statistics 37 (10):1729–47. doi:10.1080/02664760903150706
Samborski, S. M., N., Tremblay, and E., Fallon. 2009. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agronomy Journal 101 (4):800–16. doi:10.2134/agronj2008.0162Rx
G.Samson, N.Tremblay, A.E.Dudelzak, S.M.Babichenko, L.Dextraze, and J.Wollring. 2000. Nutrient stress of corn plants: early detection and discrimination using a compact multiwavelength fluorescent lidar. In Proceedings of the 20th EARSeL Symposium, Dresden, Germany (pp. 214–223)
J.Shenk, and M.Westerhaus. 1993. Monograph: Analysis of agriculture and food products by Near Infrared Reflectance Spectroscopy. Infrasoft International. Port Matilda. PA-USA. 103 p
Schröder, J. J., J. J., Neeteson, O., Oenema, and P. C., Struik. 2000. Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crops Research 66 (2):151–64. doi:10.1016/S0378-4290(00)00072-1
Stewart, A. J., W., Chapman, G. I., Jenkins, I., Graham, T., Martin, and A., Crozier. 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant, Cell and Environment 24 (11):1189–97. doi:10.1046/j.1365-3040.2001.00768.x
Tremblay, N., C., Bélec, S., Jenni, E., Fortier, and R., Mellgren. 2009. The Dualex—a new tool to determine nitrogen sufficiency in broccoli. Acta Horticulturae 824 (824):121–31. doi:10.17660/ActaHortic.2009.824.13
Tremblay, N., Z., Wang, and C., Belec. 2007. Evaluation of the Dualex for the assessment of corn nitrogen status. Journal of Plant Nutrition 30 (9):1355–69. doi:10.1080/01904160701555689
Tremblay, N., Z., Wang, and Z. G., Cerovic. 2012. Sensing crop nitrogen status with fluorescence indicators. A review. Agronomy for Sustainable Development 32 (2):451–64. doi:10.1007/s13593-011-0041-1
Vos, J., and M., Bom. 1993. Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage. Potato Research 36 (4):301–8. doi:10.1007/BF02361796
Westermann, D. T., and G. E., Kleinkopf. 1985. Nitrogen requirements of potatoes. Agronomy Journal 77 (4):616–21
Westermann, D. T., T. A., Tindall, D. W., James, and R. L., Hurst. 1994. Nitrogen and potassium fertilization of potatoes: yield and specific gravity. American Journal of Potato Research 71 (7):417–31. doi:10.1007/BF02849097
Xue, L., W., Cao, W., Luo, T., Dai, and Y., Zhu. 2004. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal 96 (1):135–42. doi:10.2134/agronj2004.1350
Zhang, Y., N., Tremblay, and J., Zhu. 2012. A first comparison of multiplex ® for the assessment of corn nitrogen status. Journal of food, Agriculture and Environment 10 (1):1008–16