[en] Raman spectroscopy is an advantageous method for studying the local structure of materials, but the interpretation of measured spectra is complicated by the presence of oblique phonons in polycrystals of polar materials. Whilst group theory considerations and standard ab initio calculations are helpful, they are often valid only for single crystals. In this paper, we introduce a method for computing Raman spectra of polycrystalline materials from first principles. We start from the standard approach based on the (Placzek) rotation invariants of the Raman tensors and extend it to include the effect of the coupling between the lattice vibrations and the induced electric field, and the electro-optic contribution, relevant for polar materials like ferroelectrics. As exemplified by applying the method to rhombohedral BaTiO3, AlN, and LiNbO3, such an extension brings the simulated Raman spectrum to a much better correspondence with the experimental one. Additional advantages of the method are that it is general, permits automation, and thus can be used in high-throughput fashion.
Research Center/Unit :
Q-MAT
Disciplines :
Physics
Author, co-author :
Popov, Maxim N.; Materials Center Leoben (MCL) Forschung GmbH
Spitaler, Jürgen; Materials Center Leoben (MCL) Forschung GmbH
Veerapandiyan, Vignaswaran K.; Materials Center Leoben (MCL) Forschung GmbH
Bousquet, Eric ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Hlinka, Jiri; Academy of Sciences of the Czech Republic, > Institute of Physics
Deluca, Marco; Materials Center Leoben (MCL) Forschung GmbH
Language :
English
Title :
Raman spectra of fine-grained materials from first principles
Publication date :
2020
Journal title :
npj Computational Materials
eISSN :
2057-3960
Publisher :
Nature Publishing Group, United Kingdom
Volume :
6
Pages :
121
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
Tier-1 supercomputer CÉCI : Consortium des Équipements de Calcul Intensif
Long, D. A. The Raman effect: a unified treatment of the theory of Raman scattering by molecules (John Wiley & Sons, Ltd, England, 2002).
Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A. & Dresselhaus, M. S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011).
Loudon, R. The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964).
De Wolf, I. Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11, 139–154 (1996).
Tenne, D. A. et al. Raman study of oxygen reduced and re-oxidized strontium titanate. Phys. Rev. B 76, 024303 (2007).
Veerapandiyan, V. K. et al. B-site vacancy induced Raman scattering in BaTiO3-based ferroelectric ceramics. J. Eur. Ceram. Soc. 40, 4684–4688 (2020).
Buscaglia, V. et al. Average and local atomic-scale structure in BaZrxTi1−xO3 (x = 0.10, 0.20, 0.40) ceramics by high-energy x-ray diffraction and Raman spectroscopy. J. Phys. Condens. Matter 26, 065901 (2014).
Harris, D. C. & Bertolucci, M. D. Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy (Dover Publications, 1989).
Baroni, S., De Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B. 55, 10337–10354 (1997).
Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).
Ambrosch-Draxl, C. et al. Raman scattering in YBa2Cu3O7: a comprehensive theoretical study in comparison with experiments. Phys. Rev. B 65, 064501 (2002).
Spitaler, J., Sherman, E. Y., Evertz, H. G. & Ambrosch-Draxl, C. Optical properties, electron-phonon couplings and Raman scattering of vanadium ladder compounds. Phys. Rev. B 70, 125107 (2004).
Spitaler, J., Sherman, E. Y. & Ambrosch-Draxl, C. Zone-center phonons in NaV2O5: A comprehensive ab initio study including Raman spectra and electron-phonon interaction. Phys. Rev. B 75, 014302 (2007).
Spitaler, J., Sherman, E. Y. & Ambrosch-Draxl, C. First-principles study of phonons, optical properties, and Raman spectra in MgV2O5. Phys. Rev. B 78, 064304 (2008).
Spitaler, J., Ambrosch-Draxl, C. & Ya Sherman, E. Lattice vibrations in CaV2O5 and their manifestations: a theoretical study based on density functional theory. New J. Phys. 11, 113009 (2009).
Burns, G. & Scott, B. A. Raman spectra of polycrystalline solids; application to the PbTi1−xZrxO3 system. Phys. Rev. Lett. 25, 1191–1194 (1970).
Burns, G. Powder raman spectra: Application to displacive ferroelectrics. Mater. Res. Bull. 6, 923–930 (1971).
Brya, W. J. Polarized raman scattering in transparent polycrystalline solids. Phys. Rev. Lett. 26, 1114–1118 (1971).
Gualberto, G. M. & Argüello, C. A. Raman spectra from oblique phonons in powdered samples. Solid State Commun. 14, 911–914 (1974).
Porezag, D. & Pederson, M. R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 54, 7830–7836 (1996).
Prosandeev, S. A., Waghmare, U., Levin, I. & Maslar, J. First-order Raman spectra of AB1/2′B1/2″O3 double perovskites. Phys. Rev. B 71, 214307 (2005).
Caracas, R. & Bobocioiu, E. Theoretical modelling of Raman spectra. Eur. Mineral. Union Notes Mineral. 12, 173–191 (2012).
Liang, Q., Dwaraknath, S. & Persson, K. A. High-throughput computation and evaluation of raman spectra. Sci. Data 6, 135 (2019).
Veithen, M., Gonze, X. & Ghosez, P. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys. Rev. B 71, 125107 (2005).
Luber, S., Iannuzzi, M. & Hutter, J. Raman spectra from ab initio molecular dynamics and its application to liquid S -methyloxirane. J. Chem. Phys. 141, 094503 (2014).
Luber, S. Raman optical activity spectra from density functional perturbation theory and density-functional-theory-based molecular dynamics. J. Chem. Theory Comput. 13, 1254–1262 (2017).
Romero, A. H. et al. ABINIT: overview and focus on selected capabilities. J. Chem. Phys. 152, 124102 (2020).
Frech, R. Oblique phonons in uniaxial crystals. J. Chem. Phys. 67, 952–956 (1977).
Lebedev, V. I. & Laikov, D. N. A quadrature formula for the sphere of the 131st algebraic order of accuracy. Dokl. Math. 59, 477–481 (1999).
Jang, M. S., Takashige, M., Kojima, S. & Nakamura, T. Oblique phonons with special concern to the soft phonon in tetragonal BaTiO3. J. Phys. Soc. Jpn. 52, 1025–1033 (1983).
Deluca, M. & Pezzotti, G. First-order transverse phonon deformation potentials of tetragonal perovskites. J. Phys. Chem. A 112, 11165–11171 (2008).
Sendova, M. & Hosterman, B. D. Raman spectroscopic study of the size-dependent order parameter of barium titanate. J. Appl. Phys. 115, 214104 (2014).
Hermet, P., Veithen, M. & Ghosez, P. Raman scattering intensities in BaTiO3 and PbTiO3 prototypical ferroelectrics from density functional theory. J. Phys. Condens. Matter 21, 215901 (2009).
Choudhury, N., Walter, E. J., Kolesnikov, A. I. & Loong, C. K. Large phonon band gap in SrTiO3 and the vibrational signatures of ferroelectricity in ATiO3 perovskites: First-principles lattice dynamics and inelastic neutron scattering. Phys. Rev. B 77, 134111 (2008).
Harima, H. et al. Raman studies on phonon modes in cubic AlGaN alloy. Appl. Phys. Lett. 74, 191–193 (1999).
Smolen, D. et al. Synthesis of aluminium nitride nanopowder. Mater. Ceram. 65, 1–7 (2013).
Filippidis, L. et al. Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride. Phys. status solidi 198, 621–627 (1996).
McNeil, L. E., Grimsditch, M. & French, R. H. Vibrational spectroscopy of aluminum nitride. J. Am. Ceram. Soc. 76, 1132–1136 (1993).
Veithen, M. & Ghosez, P. First-principles study of the dielectric and dynamical properties of lithium niobate. Phys. Rev. B. 65, 2143021–21430212 (2002).
Margueron, S. et al. Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3. J. Appl. Phys. 111, 104105 (2012).
Sanna, S. et al. Raman scattering efficiency in LiTaO3 and LiNbO3 crystals. Phys. Rev. B 91, 224302 (2015).
Gonze, X. et al. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009).
Gonze, X. et al. Recent developments in the ABINIT software package. Comput. Phys. Commun. 205, 106–131 (2016).
Gonze, X. et al. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 25, 478–492 (2002).
Wu, Z. & Cohen, R. E. More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).
van Setten, M. J. et al. The PSEUDODOJO: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39–54 (2018).
Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).