Public health, health care sciences & services Geriatrics
Author, co-author :
Rozenberg, S.; Department of Gynaecology-Obstetrics, CHU St Pierre, Université Libre de Bruxelles, Brussels, Belgium
Bruyère, Olivier ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
Bergmann, P.; Honorary Consulent, Nuclear Medicine CHU Brugmann CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
Cavalier, Etienne ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Gielen, E.; Gerontology & Geriatrics, Department of Public Health and Primary Care, KU Leuven & Department of Geriatric Medicine, UZ Leuven, Leuven, Belgium
Goemaere, S.; Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
Kaufman, J. M.; Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium
Lapauw, B.; Department of Endocrinology Ghent University Hospital, Ghent, Belgium
Laurent, M. R.; Centre for Metabolic Bone Diseases, University Hospitals Leuven, Imelda Hospital, Bonheiden, Belgium
De Schepper, J.; Department of Pediatrics, UZ Brussel, Brussels, Belgium, Belgium
Body, J. J.; Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, Brussels, Belgium
Liu, J., Curtis, E.M., Cooper, C., Harvey, N.C., State of the art in osteoporosis risk assessment and treatment. J. Endocrinol. Invest. 42:October (10) (2019), 1149–1164, 10.1007/s40618-019-01041-6 Epub 2019 Apr 12. Review.
Becker, C.B., Cohen, A., Rosen, C.J., Mulder, J.E., Evaluation and treatment of premenopausal osteoporosis. Uptodate(December), 2019.
Weaver, C.M., Gordon, C.M., Janz, K.F., et al. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos. Int. 27:4 (2016), 1281–1386, 10.1007/s00198-015-3440-3.
Lu, P., Cowell, C.T., Lloyd-Jones, S.A., Briody, J.N., Howman-Giles, R., Volumetric bone mineral density in normal subjects, aged 5–27 years. J. Clin. Endocrinol. Metab. 81:4 (1996), 1586–1590.
Neu, C.M., Rauch, F., Manz, F., Schœnau, E., Modeling of cross-sectional bone size, mass and geometry at the proximal radius: a study of normal bone development using peripheral quantitative computed tomography. Osteoporos. Int. 12:7 (2001), 538–547, 10.1007/s001980170074.
Neu, C.M., Manz, F., Rauch, F., Merkel, A., Schoenau, E., Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 28:2 (2001), 227–232, 10.1016/S8756-3282(00)00429-4.
Hasselstrøm, H., Karlsson, K.M., Hansen, S.E., Grønfeldt, V., Froberg, K., Andersen, L.B., Sex differences in bone size and bone mineral density exist before puberty. The Copenhagen School Child Intervention Study (CoSCIS). Calcif. Tissue Int. 79:1 (2006), 7–14, 10.1007/s00223-006-0012-8.
Gabel, L., Nettlefold, L., Brasher, P.M., et al. Reexamining the surfaces of bone in boys and girls during adolescent growth: a 12-year mixed longitudinal pQCT study. J. Bone Miner. Res. 30:12 (2015), 2158–2167, 10.1002/jbmr.2570.
Kirmani, S., Christen, D., Van Lenthe, G.H., et al. Bone structure at the distal radius during adolescent growth. J. Bone Miner. Res. 24:6 (2009), 1033–1042, 10.1359/jbmr.081255.
Gabel, L., Macdonald, H.M., McKay, H.A., Sex differences and growth-related adaptations in bone microarchitecture, geometry, density, and strength from childhood to early adulthood: a mixed longitudinal HR-pQCT study. J. Bone Miner. Res. 32:2 (2017), 250–263, 10.1002/jbmr.2982.
Rauch, F., Neu, C., Manz, F., Schoenau, E., The development of metaphyseal cortex-implications for distal radius fractures during growth. J. Bone Miner. Res. 16:8 (2001), 1547–1555, 10.1359/jbmr.2001.16.8.1547.
Schoenau, E., Neu, C.M., Rauch, F., Manz, F., Gender-specific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone 31:1 (2002), 110–113, 10.1016/S8756-3282(02)00802-5.
Khosla, S., Riggs, B.L., Atkinson, E.J., et al. Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J. Bone Miner. Res. 21:1 (2006), 124–131, 10.1359/JBMR.050916.
Havill, L.M., Mahaney, M.C., Binkley, T.L., Specker, B.L., Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J. Bone Miner. Res. 22:5 (2007), 737–746, 10.1359/jbmr.070213.
Nishiyama, K.K., MacDonald, H.M., Moore, S.A., Fung, T., Boyd, S.K., McKay, H.A., Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study. J. Bone Miner. Res. 27:2 (2012), 273–282, 10.1002/jbmr.552.
Bailey, D., McKay, H., Mirwald, R.L., Crocker, P.R., Faulkner, R., A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J. Bone Miner. Res. 14:10 (1999), 1672–1679, 10.1359/jbmr.1999.14.10.1672.
Khosla, S., Melton, L.J., Atkinson, E.J., O'Fallon, W.M., Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J. Clin. Endocrinol. Metab. 86:8 (2001), 3555–3561, 10.1210/jcem.86.8.7736.
Wren, T.A.L., Kim, P.S., Janicka, A., Sanchez, M., Gilsanz, V., Timing of peak bone mass: discrepancies between CT and DXA. J. Clin. Endocrinol. Metab. 92:3 (2007), 938–941, 10.1210/jc.2006-1570.
Walsh, J., Henry, Y., Fatayerji, D., Eastell, R., Lumbar spine peak bone mass and bone turnover in men and women: a longitudinal study. Osteoporos. Int. 20:3 (2009), 355–362, 10.1007/s00198-008-0672-5.
Berger, C., Goltzman, D., Langsetmo, L., et al. Peak bone mass from longitudinal data: implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J. Bone Miner. Res. 25:9 (2010), 1948–1957, 10.1002/jbmr.95.
Ohlsson, C., Darelid, A., Nilsson, M., Melin, J., Mellström, D., Lorentzon, M., Cortical consolidation due to increased mineralization and endosteal contraction in young adult men: a five-year longitudinal study. J. Clin. Endocrinol. Metab. 96:7 (2011), 2262–2269, 10.1210/jc.2010-2751.
Verroken, C., Zmierczak, H.G., Goemaere, S., Kaufman, J.M., Lapauw, B., Bone turnover in young adult men: cross-sectional determinants and associations with prospectively assessed bone loss. J. Bone Miner. Res. 33:2 (2017), 261–268, 10.1002/jbmr.3303.
Lorentzon, M., Mellström, D., Ohlsson, C., Age of attainment of peak bone mass is site specific in Swedish men - the GOOD study. J. Bone Miner. Res. 20:7 (2005), 1223–1227, 10.1359/JBMR.050306.
Boudin, E., Van Hul, W., Genetics of human bone formation. Eur. J. Endocrinol. 177:2 (2017), R69–R83, 10.1530/EJE-16-0990.
Bonjour, J.P., Chevalley, T., Pubertal timing, bone acquisition, and risk of fracture throughout life. Endocr. Rev. 35:5 (2014), 820–847, 10.1210/er.2014-1007.
Baird, J., Kurshid, M.A., Kim, M., Harvey, N., Dennison, E., Cooper, C., Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos. Int. 22:5 (2011), 1323–1334, 10.1007/s00198-010-1344-9.
Martínez-Mesa, J., Restrepo-Méndez, M.C., González, D.A., et al. Life-course evidence of birth weight effects on bone mass: systematic review and meta-analysis. Osteoporos. Int. 24:1 (2013), 7–18, 10.1007/s00198-012-2114-7.
Cohen-Solal, M.E., Baudoin, C., Omouri, M., Kuntz, D., De Vernejoul, M.C., Bone mass in middle-aged osteoporotic men and their relatives: familial effect. J. Bone Miner. Res. 13:12 (1998), 1909–1914, 10.1359/jbmr.1998.13.12.1909.
Van Pottelbergh, I., Goemaere, S., Zmierczak, H., De Bacquer, D., Kaufman, J.M., Deficient acquisition of bone during maturation underlies idiopathic osteoporosis in men: evidence from a three-generation family study. J. Bone Miner. Res. 18:2 (2003), 303–311, 10.1359/jbmr.2003.18.2.303.
Lapauw, B., Taes, Y., Goemaere, S., Toye, K., Zmierczak, H.G., Kaufman, J.M., Anthropometric and skeletal phenotype in men with idiopathic osteoporosis and their sons is consistent with deficient estrogen action during maturation. J. Clin. Endocrinol. Metab. 94:11 (2009), 4300–4308, 10.1210/jc.2009-0568.
Kindblom, J.M., Lorentzon, M., Norjavaara, E., et al. Pubertal timing predicts previous fractures and BMD in young adult men: the GOOD study. J. Bone Miner. Res. 21:5 (2006), 790–795, 10.1359/jbmr.020602.
Trémollieres, F., Impact of oral contraceptive on bone metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 27:1 (2013), 47–53, 10.1016/j.beem.2012.09.002.
Nappi, C., Bifulco, G., Tommaselli, G.A., Gargano, V., Di Carlo, C., Hormonal contraception and bone metabolism: a systematic review. Contraception 86:December(6) (2012), 606–621, 10.1016/j.contraception.2012.04.009 Epub 2012 Jun 18. Review.
Hadji, P., Colli, E., Regidor, P.A., Bone health in estrogen-free contraception. Osteoporos. Int. 30:December(12) (2019), 2391–2400, 10.1007/s00198-019-05103-6 Epub 2019 Aug 24. Review.
Ward, K.A., Roberts, S.A., Adams, J.E., Mughal, M.Z., Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 36:6 (2005), 1012–1018, 10.1016/j.bone.2005.03.001.
Foley, S., Quinn, S., Jones, G., Tracking of bone mass from childhood to adolescence and factors that predict deviation from tracking. Bone 44:5 (2009), 752–757, 10.1016/j.bone.2008.11.009.
Meyer, U., Romann, M., Zahner, L., et al. Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone 48:4 (2011), 792–797, 10.1016/j.bone.2010.11.018.
Specker, B., Minett, M., Can physical activity improve peak bone mass?. Curr. Osteoporos. Rep. 11:3 (2013), 229–236, 10.1007/s11914-013-0152-5.
Bielemann, R.M., Martinez-Mesa, J., Gigante, D.P., Physical activity during life course and bone mass: a systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet. Disord., 14, 2013, 77, 10.1186/1471-2474-14-77.
Taes, Y.E.C., Lapauw, B., Vanbillemont, G., et al. Fat mass is negatively associated with cortical bone size in young healthy male siblings. J. Clin. Endocrinol. Metab. 94:7 (2009), 2325–2331, 10.1210/jc.2008-2501.
Zhu, K., Briffa, K., Smith, A., et al. Gender differences in the relationships between lean body mass, fat mass and peak bone mass in young adults. Osteoporos. Int. 25:5 (2014), 1563–1570, 10.1007/s00198-014-2665-x.
Rauch, F., Bailey, D.A., Baxter-Jones, A., Mirwald, R., Faulkner, R., The “muscle-bone unit” during the pubertal growth spurt. Bone 34:5 (2004), 771–775, 10.1016/j.bone.2004.01.022.
Rizzoli, R., Nutritional aspects of bone health. Best Pract. Res. Clin. Endocrinol. Metab. 28:6 (2014), 795–808, 10.1016/j.beem.2014.08.003.
Rudäng, R., Darelid, A., Nilsson, M., et al. Smoking is associated with impaired bone mass development in young adult men: a 5-year longitudinal study. J. Bone Miner. Res. 27:10 (2012), 2189–2197, 10.1002/jbmr.1674.
Taes, Y., Lapauw, B., Vanbillemont, G., et al. Early smoking is associated with peak bone mass and prevalent fractures in young, healthy men. J. Bone Miner. Res. 25:2 (2010), 379–387, 10.1359/jbmr.090809.
Milos, G., Gallo, L.M., Sosic, B., Uebelhart, D., Goerres, G., Haeuselmann, H.J., Eich, D., Bone mineral density in young women on methadone substitution. Calcif. Tissue Int. 89:September(3) (2011), 228–233, 10.1007/s00223-011-9510-4 Epub 2011 Jun 23.
Sophocleous, A., Robertson, R., Ferreira, N.B., McKenzie, J., Fraser, W.D., Ralston SH.HEavy Cannabis use is associated with low bone mineral density and an increased risk of fractures. Am. J. Med. 130:2 (2017), 214–2221, 10.1016/j.amjmed.2016.07.034 Epub 2016 Sep 2.
Bourne, D., Plinke, W., Hooker, E.R., Nielson, C.M., Cannabis use and bone mineral density: NHANES 2007-2010. Arch. Osteoporos., 12(December (1)), 2017, 29, 10.1007/s11657-017-0320-9 Epub 2017 Mar 13.
Bianchi, M.L., Leonard, M.B., Bechtold, S., Högler, W., Mughal, M.Z., Schönau, E., Sylvester, F.A., Vogiatzi, M., van den Heuvel-Eibrink, M.M., Ward, L., International Society for Clinical Densitometry. Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD Pediatric Official Positions. J. Clin. Densitom., 17(2), 2014 281-45.
Flynn, J., Foley, S., Jones, G., Can BMD assessed by DXA at age 8 predict fracture risk in boys and girls during puberty?: an eight-year prospective study. J. Bone Miner. Res. 22:9 (2007), 1463–1467.
Bishop, N., Arundel, P., Clark, E., Dimitri, P., Farr, J., Jones, G., Makitie, O., Munns, C.F., Shaw, N., International Society of Clinical Densitometry, Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J. Clin. Densitom. 17:2 (2014), 275–280.
Saraff, V., Högler, W., Endocrinology and adolescence: osteoporosis in children: diagnosis and management. Eur. J. Endocrinol. 173:6 (2015), R185–97.
Bianchi, M.L., Baim, S., Bishop, N.J., Gordon, C.M., Hans, D.B., Langman, C.B., Leonard, M.B., Kalkwarf, H.J., Official positions of the International Society for Clinical Densitometry (ISCD) on DXA evaluation in children and adolescents. Pediatr. Nephrol. 25:1 (2010), 37–47.
Kalkwarf, H.J., Gilsanz, V., Lappe, J.M., Oberfield, S., Shepherd, J.A., Hangartner, T.N., Huang, X., Frederick, M.M., Winer, K.K., Zemel, B.S., Tracking of bone mass and density during childhood and adolescence. J. Clin. Endocrinol. Metab. 95:4 (2010), 1690–1698.
Kyriakou, A., Shepherd, S., Mason, M., Ahmed, S.F., Prevalence of vertebral fractures in children with suspected osteoporosis. J. Pediatr. 179 (2016), 219–225.
Donaldson, A.A., Feldman, H.A., O'Donnell, J.M., Gopalakrishnan, G., Gordon, C.M., Spinal bone texture assessed by trabecular bone score in adolescent girls with anorexia nervosa. J. Clin. Endocrinol. Metab. 100:9 (2015), 3436–3442.
Grover, M., Bachrach, L.K., Osteoporosis in children with chronic illnesses: diagnosis, monitoring, and treatment. Curr. Osteoporos. Rep. 15:4 (2017), 271–282.
Faje, A.T., Fazeli, P.K., Miller, K.K., Katzman, D.K., Ebrahimi, S., Lee, H., Mendes, N., Snelgrove, D., Meenaghan, E., Misra, M., Klibanski, A., Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int. J. Eat. Disord. 47:5 (2014), 458–466.
Houlihan, C.M., Bone health in cerebral palsy: who's at risk and what to do about it?. J. Pediatr. Rehabil. Med. 7:2 (2014), 143–153.
Fehlings, D., Switzer, L., Agarwal, P., Wong, C., Sochett, E., Stevenson, R., Sonnenberg, L., Smile, S., Young, E., Huber, J., Milo-Manson, G., Kuwaik, G.A., Gaebler, D., Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev. Med. Child Neurol. 54:2 (2012), 106–116.
Birnkrant, D.J., Bushby, K., Bann, C.M., Alman, B.A., Apkon, S.D., Blackwell, A., Case, L.E., Cripe, L., Hadjiyannakis, S., Olson, A.K., Sheehan, D.W., Bolen, J., Weber, D.R., Ward, L.M., DMD Care Considerations Working Group, Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol., 2018, 23 pii: S1474-4422(18)30025-5.
Burnham, J.M., Inflammatory diseases and bone health in children. Curr. Opin. Rheumatol. 24:5 (2012), 548–553.
Brookes, D.S., Davies, P.S., Bones in pediatric Crohn's disease: a review of fracture risk in children and adults. Inflamm. Bowel Dis. 17:5 (2011), 1223–1228.
Cummings, E.A., Ma, J., Fernandez, C.V., Halton, J., Alos, N., Miettunen, P.M., Jaremko, J.L., Ho, J., Shenouda, N., Matzinger, M.A., Lentle, B., Stephure, D., Stein, R., Sbrocchi, A.M., Rodd, C., Lang, B., Israels, S., Grant, R.M., Couch, R., Barr, R., Hay, J., Rauch, F., Siminoski, K., Ward, L.M., Canadian STOPP Consortium (National Pediatric Bone Health Working Group). Incident vertebral fractures in children with leukemia during the four years following diagnosis. J. Clin. Endocrinol. Metab. 100:9 (2015), 3408–3417.
Sermet-Gaudelus, I., Castanet, M., Retsch-Bogart, G., Aris, R.M., Update on cystic fibrosis-related bone disease: a special focus on children. Paediatr. Respir. Rev. 10:3 (2009), 134–142.
Wasserman, H., Gordon, C.M., Bone mineralization and fracture risk assessment in the pediatric population. J. Clin. Densitom. 20:3 (2017), 389–396.
Shepherd, J.A., Wang, L., Fan, B., Gilsanz, V., Kalkwarf, H.J., Lappe, J., Lu, Y., Hangartner, T., Zemel, B.S., Fredrick, M., Oberfield, S., Winer, K.K., Optimal monitoring time interval between DXA measures in children. J. Bone Miner. Res. 26:11 (2011), 2745–2752.
Williams, K.M., Update on bone health in pediatric chronic disease. Endocrinol. Metab. Clin. North Am. 45:2 (2016), 433–441.
Simm, P.J., Biggin, A., Zacharin, M.R., Rodda, C.P., Tham, E., Siafarikas, A., Jefferies, C., Hofman, P.L., Jensen, D.E., Woodhead, H., Brown, J., Wheeler, B.J., Brookes, D., Lafferty, A., Munns, C.F., APEG Bone Mineral Working Group, Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J. Paediatr. Child Health 54:3 (2018), 223–233.
Saraff, V., Sahota, J., Crabtree, N., Sakka, S., Shaw, N.J., Högler, W., Efficacy and treatment costs of zoledronate versus pamidronate in paediatric osteoporosis. Arch. Dis. Child. 103:1 (2018), 92–94.
Albright, F., Reifenstein, E.C., The Parathyroid Glands and Metabolic Bone Disease. 1948, The Williams and Wilkins Company, Baltimore, 197–204.
Khosla, S., Lufkin, E.G., Hodgson, S.F., Fitzpatrick, L.A., Melton, L.J. III, Epidemiology and clinical features of osteoporosis in young individuals. Bone 15 (1994), 551–555.
Cardon, L.R., Garner, C., Bennett, S.T., Mackay, I.J., Edwards, R.M., Cornish, J., Hegde, M., Murray, M.A.F., Reid, I.R., Cundy, T., Evidence for a major gene for bone mineral density in idiopathic osteoporotic families. J. Bone Miner. Res. 15 (2000), 1132–1137.
Ciria-Recasensa, M., Perez-Edoa, L., Blanch-Rubio, J., Marinoso, M.L., Benito-Ruiza, P., Serrano, S., Carbonell-Abello, J., Bone histomorphometry in 22 male patients with normocalciuric idiopathic osteoporosis. Bone 36 (2005), 926–930.
Pernow, Y., Granberg, B., Saaf, M., Weidenhielm, L., Osteoblast dysfunction in male idiopathic osteoporosis. Calcif. Tissue Int. 78 (2006), 90–97.
Donovan, M.A., Dempster, D., Zhou, H., McMahon, D.J., Fleischer, J., Shane, E., Low bone formation in premenopausal women with idiopathic osteoporosis. J. Clin. Endocrinol. Metab. 90 (2005), 3331–3336.
Cohen, A., Dempster, D.W., Recker, R.R., Stein, E.M., Lappe, J.M., Zhou, H., Wirth, A.J., van Lenthe, G.H., Kohler, T., Zwahlen, A., Muller, R., Rosen, C.J., Serge Cremers, S., Nickolas, T.L., McMahon, D.J., Rogers, H., Staron, R.B., LeMaster, J., Shane, E., Abnormal bone microarchitecture and evidence of osteoblast dysfunction in premenopausal women with idiopathic osteoporosis. J. Clin. Endocrinol. Metab. 96 (2011), 3095–3105.
Marie, P., de Vernejoul, M.C., Connes, D., Hott, M., Decreased DNA synthesis by cultured osteoblastic cells in eugonadal osteoporotic men with defective bone formation. J. Clin. Invest. 88 (1991), 1167–1172.
Zerwekh, J., Sakhaee, K., Breslau, N.A., Gottschalk, F., Pak, C.Y., Impaired bone formation in male idiopathic osteoporosis: further reduction in the presence of concomitant hypercalciuria. Osteoporos. Int. 2 (1992), 128–134.
Wong, M.M., Rao, L.G., Ly, H., Hamilton, L., Ish-Shalom, S., Sturtridge, W., Tong, J., McBroom, R., Josse, R.G., Murray, T.M., In vitro study of osteoblastic cells from patients with idiopathic osteoporosis and comparison with cells from non-osteoporotic controls. Osteoporos. Int. 4 (1994), 21–31.
Patsch, J.M., Kohler, T., Berzlanovich, A., Muschitz, C., Bieglmayr, C., Roschger, P., Resch, H., Pietschman, P., Trabecular bone microstructure and local gene expression in iliac crest biopsies of men with idiopathic osteoporosis. J. Bone Miner. Res. 26 (2011), 1584–1592.
Fratzl-Zelman, N., Roschger, P., Misof, B.M., Nawrot-Wawrzyniak, K., Pötter-Lang, S., Muschitz, C., Resch, H., Klaushofer, K., Zwettler, E., Fragility fractures in men with idiopathic osteoporosis are associated with undermineralization of the bone matrix without evidence of increased bone turnover. Calcif. Tissue Int. 88 (2011), 378–387.
Misof, B.M., Gamsjaeger, S., Cohen, A., Hofstetter, A., Roschger, P., Stein, E., Nickolas, T.L., Rogers, H.F., Dempster, D., Zhou, H., Recker, R., Lappe, J., McMahon, D., Paschalis, E.P., Fratzl, P., Shane, E., Klaushofer, K., Bone material properties in premenopausal women with idiopathic osteoporosis. J. Bone Miner. Res. 27 (2012), 2551–2561.
Reed, B., Zerwekh, J.E., Sakhaee, K., Breslau, N.A., Gottschal, F., Pak, C.Y.C., Serum IGF 1 is low and correlated with osteoblastic surface in idiopathic osteoporosis. J. Bone Miner. Res. 10 (1995), 1218–1224.
Ljunghall, S., Johansson, A.G., Burman, P., Kampe, O., Lindh, E., Karlsson, F.A., Low plasma levels of insulin-like growth factor 1 (IGF-I) in male patients with idiopathic osteoporosis. J. Int. Med. 23 (1992), 259–264.
Pernow, Y., Hauge, E.M., Linder, K., Dahl, E., Sääl, M., Bone histomorphometry in male idiopathic osteoporosis. Calcif. Tissue Int. 84 (2009), 430–438.
Cohen, A., Sherry Liu, X., Stein, E.M., McMahon, D.J., Rogers, H.F., LeMaster, J., Recker, R.R., Lappe, J.M., GuoX, E., Shane, E., Bone microarchitecture and stiffness in premenopausal women with idiopathic osteoporosis. J. Clin. Endocrinol. Metab. 94 (2009), 4351–4360.
Pietschmann, P., Kudlacek, S., Grisar, J., Spitzauer, S., Woloszczuk, W., Willvonseder, R., Peterlik, M., Bone turnover markers and sex hormones in men with idiopathic osteoporosis. Eur. J. Clin. Invest. 31 (2001), 444–451.
Peris, P., Ruiz-Esquide, V., Monegal, A., Alvarez, L., Martínez de Osaba, M.J., Martínez-Ferrer, Á, Reyes, R., Guañabens, N., Idiopathic osteoporosis in premenopausal women. Clinical characteristics and bone remodelling. Clin. Exp. Rheumatol. 26 (2008), 986–991.
Laroche, M., Heterogeneity of biological bone markers in idiopathic male osteoporosis. Rheumatol. Int. 32 (2012), 2101–2104.
Cohen, A., Lang, T.F., McMahon, D.J., Sherry Liu, X., Guo, X.E., Zhang, C., Stein, E.M., Dempster, D.W., Young, P., Saeed, I., Lappe, J.M., Recker, R.R., Shane, E., Central QCT reveals lower volumetric BMD and stiffness in premenopausal women with idiopathic osteoporosis, regardless of fracture history. J. Clin. Endocrinol. Metab. 97 (2012), 4244–4252.
Muschitz, C., Kocijan, R., Haschka, J., Pahr, D., Kaider, A., Pietschmann, P., Hans, D., Muschitz, G.K., Fahrleitner-Pammer, A., Resch, H., TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone 79 (2015), 259–266.
Muschitz, C., Kocijan, R., Pahr, D., Patsch, J.M., Amrein, K., Misof, B.M., Kaider, A., Resch, H., Pietschmann, P., Ibandronate increases sclerostin levels and bone strength in male patients with idiopathic osteoporosis. Calcif. Tissue Int. 96 (2015), 477–489.
Cohen, A., Stein, E.M., Recker, R.R., Lappe, J.M., Dempster, D.W., Zhou, H., Cremers, S., McMahon, D.J., Nickolas, T.L., Müller, R., Zwahlen, A., Young, P., Stubby, J., Shane, E., Teriparatide for idiopathic osteoporosis in premenopausal women: a pilot study. J. Clin. Endocrinol. Metab. 98 (2013), 1971–1981.
Nishiyama, K.K., Cohen, A., Young, P., Wang, J., Lappe, J.M., Guo, X.E., Dempster, D.W., Recker, R.R., Shane, E., Teriparatide increases strength of the peripheral skeleton in premenopausal women with idiopathic osteoporosis: a pilot HR-pQCT study. J. Clin. Endocrinol. Metab. 99 (2014), 2418–2425.
Cohen, A., Kamanda-Kosseh, M., Recker, R.R., Lappe, J.M., Dempster, D.W., Zhou, H., Cremers, S., Bucovsky, M., Stubby, J., Shane, E., Bone density after teriparatide discontinuation in premenopausal idiopathic osteoporosis. J. Clin. Endocrinol. Metab. 100 (2015), 4208–4214.
Callegari, E.T., Garland, S.M., Gorelik, A., Wark, J.D., Determinants of bone mineral density in young Australian women; results from the Safe-D study. Osteoporos. Int., 28(June), 2017, 10.1007/s00198-017-4100-6 [Epub ahead of print] Erratum in: Osteoporos Int.2017 Sep 6.
Gielen, E., Bergmann, P., Bruyère, O., Cavalier, E., Delanaye, P., Goemaere, S., Kaufman, J.M., Locquet, M., Reginster, J.Y., Rozenberg, S., Vandenbroucke, A.M., Body, J.J., Osteoporosis in frail patients: a consensus paper of the Belgian bone club. Calcif. Tissue Int. 101:August(2) (2017), 111–131, 10.1007/s00223-017-0266-3 Epub 2017 Mar 21. Review.
Grinspoon, S., Thomas, E., Pitts, S., et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann. Intern. Med. 133:10 (2000), 790–794.
Misra, M., Klibanski, A., Anorexia nervosa and bone. J. Endocrinol. 221:3 (2014), R163–76.
Misra, M., Klibanski, A., Anorexia nervosa and osteoporosis. Rev. Endocr. Metab. Disord. 7:1-2 (2006), 91–99.
Veronese, N., Solmi, M., Rizza, W., et al. Vitamin D status in anorexia nervosa: a meta-analysis. Int. J. Eat. Disord. 48:7 (2015), 803–813.
Misra, M., Katzman, D., Miller, K.K., et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J. Bone Miner. Res. 26:10 (2011), 2430–2438.
Theintz, G., Buchs, B., Rizzoli, R., et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J. Clin. Endocrinol. Metab. 75:4 (1992), 1060–1065.
Rigotti, N.A., Neer, R.M., Skates, S.J., Herzog, D.B., Nussbaum, S.R., The clinical course of osteoporosis in anorexia nervosa. A longitudinal study of cortical bone mass. JAMA 265:9 (1991), 1133–1138.
Vestergaard, P., Emborg, C., Stoving, R.K., Hagen, C., Mosekilde, L., Brixen, K., Fractures in patients with anorexia nervosa, bulimia nervosa, and other eating disorders–a nationwide register study. Int. J. Eat. Disord. 32:3 (2002), 301–308.
Strokosch, G.R., Friedman, A.J., Wu, S.C., Kamin, M., Effects of an oral contraceptive (norgestimate/ethinyl estradiol) on bone mineral density in adolescent females with anorexia nervosa: a double-blind, placebo-controlled study. J. Adolesc. Health 39:6 (2006), 819–827.
Miller, K.K., Meenaghan, E., Lawson, E.A., et al. Effects of risedronate and low-dose transdermal testosterone on bone mineral density in women with anorexia nervosa: a randomized, placebo-controlled study. J. Clin. Endocrinol. Metab. 96:7 (2011), 2081–2088.
Golden, N.H., Iglesias, E.A., Jacobson, M.S., et al. Alendronate for the treatment of osteopenia in anorexia nervosa: a randomized, double-blind, placebo-controlled trial. J. Clin. Endocrinol. Metab. 90:6 (2005), 3179–3185.
Klibanski, A., Greenspan, S., Increase in bone mass after treatment of hyperprolactinemic amenorrhea N. New England J. Med. Surg. Collat. Branches Sci. 315:9 (1986), 542–546.
Schlechte, J., Walkner, L., Kathol, M., A longitudinal analysis of premenopausal bone loss in healthy women and women with hyperprolactinemia. J. Clin. Endocrinol. Metab. 75:3 (1992), 698–703.
Schlechte, J.A., Sherman, B., Martin, R., Bone density in amenorrheic women with and without hyperprolactinemia. J. Clin. Endocrinol. Metab. 56:June (6) (1983), 1120–1123.
Melmed, S., Casanueva, F.F., Hoffman, A.R., Kleinberg, D.L., Montori, V.M., Schlechte, J.A., Wass, J.A., Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. Endocrine Society. J. Clin. Endocrinol. Metab. 96:February (2) (2011), 273–288, 10.1210/jc.2010-1692 Review.
Guilbert, E.R., Brown, J.P., Kaunitz, A.M., Wagner, M.S., Bérubé, J., Charbonneau, L., Francoeur, D., Gilbert, A., Gilbert, F., Roy, G., Senikas, V., Jacob, R., Morin, R., The use of depot-medroxyprogesterone acetate in contraception and its potential impact on skeletal health. Contraception 79:3 (2009), 167–177, 10.1016/j.contraception.2008.10.016 Epub 2009 Jan 15. Review.
Rozenberg, S., Praet, J., Pazzaglia, E., Gilles, C., Manigart, Y., Vandromme, J., The use of selective progestin receptor modulators (SPRMs) and more specifically ulipristal acetate in the practice of gynaecology. Aust. N. Z. J. Obstet. Gynaecol. 57:4 (2017), 393–399, 10.1111/ajo.12641 Epub 2017 Jun 1. Review.
Vujovic, S., Brincat, M., Erel, T., Gambacciani, M., Lambrinoudaki, I., Moen, M.H., Schenck-Gustafsson, K., Tremollieres, F., Rozenberg, S., Rees, M., European Menopause and Andropause Society. EMAS position statement: managing women with premature ovarian failure. Maturitas, 67(September (1)), 2010, 10.1016/j.maturitas.2010.04.011 91-3 Epub 2010 Jun 3.
Carfì, A., Liperoti, R., Fusco, D., Giovannini, S., Brandi, V., Vetrano, D.L., Meloni, E., Mascia, D., Villani, E.R., Manes Gravina, E., Bernabei, R., Onder, G., Bone mineral density in adults with Down syndrome. Osteoporos. Int. 28:10 (2017), 2929–2934, 10.1007/s00198-017-4133-x Epub 2017 Jul 6.
Ferrari, S., Biabchi, M.L., Eisman, J.A., Foldes, A.J., Adami, S., Wahl, D.A., Stepan, J.J., de Vernejoul, M.-C., Kaufman, J.M., For the IOF Committee of Scientific Advisors Working Party on Osteoporosis pathophysiology. Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos. Int. 23 (2012), 2735–2748.
Ferrari, S.L., Deutsch, S., Baudoin, C., Cohen-Solal, M., Ostertag, A., Antonarakis, S.E., Rizzoli, R., de Vernejoul, M.C., LRP5 gene polymorphisms and idiopathic osteoporosis in men. Bone 37 (2005), 770–775.
Galusca, B., Zouch, M., Germain, N., Bossu, C., Frere, D., Lang, F., Lafage-Proust, M.H., Thomas, T., Vico, L., Estour, B., Constitutional thinness: unusual human phenotype of low bone quality. J. Clin. Endocrinol. Metab. 93:1 (2008), 110–117 2008.
Chevalley, T., Bonjour, J.P., van Rietbergen, B., Rizzoli, R., Ferrari, S., Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass. J. Clin. Endocrinol. Metab. 97:11 (2012), 4174–4184.
Taes, Y., Lapauw, B., Vanbillemont, G., De Bacquer, D., Goemaere, S., Zmierczak, H., Kaufman, J.M., Prevalent fractures are related to cortical bone geometry in young healthy men at age of peak bone mass. J. Bone Miner. Res. 25 (2010), 1433–1440.
ISCD. International Society for Clinical Densitometry 2015 updated Official Positions. https://www.iscd.org/official-positions/6th-iscd-position-development-conference-adult/.
Khosla, S., Lufkin, E.G., Hodgson, S.F., Fitzpatrick, L.A., Melton, L.J. 3rd, Epidemiology and clinical features of osteoporosis in young individuals. Bone 15 (1994), 551–555.
Moreira Kulak, C.A., Schussheim, D.H., McMahon, D.J., Kurland, E., Silverberg, S.J., Siris, E.S., Bilezikian, J.P., Shane, E., Osteoporosis and low bone mass in premenopausal and perimenopausal women. Endocr. Pract. 6 (2000), 296–304.
Peris, P., Guanabens, N., Martinez de Osaba, M.J., Monegal, A., Alvarez, L., Pons, F., Ros, I., Cerda, D., Munoz-Gomez, J., Clinical characteristics and etiologic factors of premenopausal osteoporos is in a group of Spanish women. Semin. Arthritis Rheum. 32 (2002), 64–70.
Painter, S.E., et al. Secondary osteoporosis: a review of the recent evidence. Endocr. Pract. 12 (2006), 436–445.
Kasperk, C.H., et al. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J. Bone Miner. Res. 12 (1997), 464–471.
Miedlich, S.U., et al. Aromatase deficiency in a male patient – case report and review of the literature. Bone 93 (2016), 181–186.
Amin, S., et al. Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann. Intern. Med. 133 (2000), 951–963.
LeBlanc, E.S., et al. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J. Clin. Endocrinol. Metab. 94 (2009), 3337–3346.
Fink, H.A., et al. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J. Clin. Endocrinol. Metab. 91 (2006), 3908–3915.
Seftel, A.D., et al. Critical update of the 2010 endocrine society clinical practice guidelines for male hypogonadism: a systematic analysis. Mayo Clin. Proc. 90 (2015), 1104–1115.
Body, J.J., et al. Management of cancer treatment-induced bone loss in early breast and prostatic cancer – a consensus paper of the Belgian Bone Club. Osteoporos. Int. 18 (2007), 1439–1450.
Smith, M.R., et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361 (2009), 745–755.
Nicodemus, K.K., et al. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care 24 (2001), 1192–1197.
Bouillon, R., et al. Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J. Clin. Endocrinol. Metab. 80 (1995), 1194–1202.
Hie, M., et al. Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int. J. Mol. Med. 28 (2011), 455–462.
Napoli, N., et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat. Rev. Endocrinol. 13 (2017), 208–219.
Ferrari, S., et al. Diagnosis and management of bone fragility in diabetes: an emerging challenge. Osteoporos. Int. 29 (2018), 2585–2596.
Bilezikian, J.P., et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J. Clin. Endocrinol. Metab. 94 (2009), 335–339.
Martin, P., et al. Partially reversible osteopenia after surgery for primary hyperparathyroidism. Arch. Intern. Med. 46 (1986), 689–691.
Vestergaard, P., Mosekilde, L., Hyperthyroidism, bone mineral, and fracture risk–a meta-analysis. Thyroid 13 (2003), 585–593.
Baleanu, F., et al. Severe secondary osteoporosis in a premenopausal woman: should a specific treatment for osteoporosis be started?. Clin. Cases Miner. Bone Metab. 15 (2018), 115–118.
Mazziotti, G., et al. Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: influence of GH replacement therapy. J. Bone Miner. Res. 21 (2006), 520–528.
Mazziotti, G., et al. Bone turnover, bone mineral density, and fracture risk in acromegaly: a meta-analysis. J. Clin. Endocrinol. Metab. 100 (2015), 384–394.