[en] Offshore wind energy development has been driven by government support schemes; however, recent cost reductions raise the prospect of offshore wind power becoming cheaper than conventional power generation. Many countries use auctions to provide financial support; however, differences in auction design make their results difficult to compare. Here, we harmonize the auction results from five countries based on their design features, showing that offshore wind power generation can be considered commercially competitive in mature markets. Between 2015 and 2019, the price paid for power from offshore wind farms across northern Europe fell by 11.9% per year. The bids received in 2019 translate to an average price of 51 EUR/MWh, and substantially different auction designs have received comparably low bids. The level of subsidy implied by the auction results depends on future power prices; however, projects in Germany and the Netherlands are already subsidy-free, and it appears likely that in 2019 the United Kingdom will have auctioned the world's first negative-subsidy offshore wind farm.
Disciplines :
Sciences économiques & de gestion: Multidisciplinaire, généralités & autres Energie
Auteur, co-auteur :
Jansen, Malte
Staffell, Iain
Kitzing, Lena
Quoilin, Sylvain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Wiggelinkhuizen, Edwin
Bulder, Bernard
Riepin, Iegor
Müsgens, Felix
Langue du document :
Anglais
Titre :
Offshore wind competitiveness in mature markets without subsidy
Renewable Energy Capacity Statistics 2020 (IRENA, 2020).
IEA. World Energy Outlook 2019 (OECD, 2019); https://doi.org/10.1787/caf32f3b-en
A Clean Planet for all: A European Long-term Strategic Vision for a Prosperous, Modern, Competitive Climate Neutral Economy – In-Depth Analysis in Support of the Commission Communication COM/2018/773 (European Commission, 2018).
Bosch, J., Staffell, I. & Hawkes, A. D. Temporally-explicit and spatially-resolved global onshore wind energy potentials. Energy 131, 207–217 (2017). DOI: 10.1016/j.energy.2017.05.052
Arent, D. et al. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios (National Renewable Energy Laboratory, 2012); 10.2172/1055364
Toke, D. The UK offshore wind power programme: A sea-change in UK energy policy? Energy Policy 39, 526–534 (2011). DOI: 10.1016/j.enpol.2010.08.043
Green, R. & Vasilakos, N. The economics of offshore wind. Energy Policy 39, 496–502 (2011). DOI: 10.1016/j.enpol.2010.10.011
Unlocking Europe’s Offshore Wind Potential. Moving Towards a Subsidy Free Industry (PwC, 2018).
The New Economics of Offshore Wind (Aurora Energy Research, 2018).
Offshore Wind Developers See Ripe Conditions for Zero-subsidy Bids (NewEnergyUpdate, 2018); http://newenergyupdate.com/wind-energy-update/offshore-wind-developers-see-ripe-conditions-zero-subsidy-bids.
Creutzig, F. et al. The underestimated potential of solar energy to mitigate climate change. Nat. Energy 2, 17140 (2017). DOI: 10.1038/nenergy.2017.140
Schmidt, O., Hawkes, A., Gambhir, A. & Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 2, 17110 (2017). DOI: 10.1038/nenergy.2017.110
Heptonstall, P., Gross, R., Greenacre, P. & Cockerill, T. The cost of offshore wind: understanding the past and projecting the future. Energy Policy 41, 815–821 (2012). DOI: 10.1016/j.enpol.2011.11.050
Vieira, M., Snyder, B., Henriques, E. & Reis, L. European offshore wind capital cost trends up to 2020. Energy Policy 129, 1364–1371 (2019). DOI: 10.1016/j.enpol.2019.03.036
Dismukes, D. E. & Upton, G. B. Economies of scale, learning effects and offshore wind development costs. Renew. Energy 83, 61–66 (2015). DOI: 10.1016/j.renene.2015.04.002
Bolinger, M. & Wiser, R. Understanding wind turbine price trends in the U.S. over the past decade. Energy Policy 42, 628–641 (2012). DOI: 10.1016/j.enpol.2011.12.036
Wiser, R. et al. Expert elicitation survey on future wind energy costs. Nat. Energy 1, 16135 (2016). DOI: 10.1038/nenergy.2016.135
Hoffman, C. S. Financial Viability of Offshore Wind on the Texas Gulf Coast (The Univ. of Texas at Austin, 2019).
Klinge Jacobsen, H., Hevia-Koch, P. & Wolter, C. Nearshore and offshore wind development: costs and competitive advantage exemplified by nearshore wind in Denmark. Energy Sustain. Dev. 50, 91–100 (2019). DOI: 10.1016/j.esd.2019.03.006
Beiter, P., Musial, W., Kilcher, L., Maness, M. & Smith, A. An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030 (National Renewable Energy Laboratory, 2017); 10.2172/1349721
Noonan, M. et al. IEA Wind Wind Technology Collaboration Programme Task 26: Offshore Wind Energy International Comparative Analysis (National Renewable Energy Laboratory, 2018); 10.2172/1483473
Lazard’s Levelized Cost of Storage Analysis—v.12.0. (Lazard, 2018).
Transmission Costs for Offshore Wind Final Report April 2016 (OWPB, 2016).
Focus on the Cost of Offshore Wind Energy (Algemene Rekenkamer, 2018).
Aldersey-Williams, J., Broadbent, I. D. & Strachan, P. A. Better estimates of LCOE from audited accounts – a new methodology with examples from United Kingdom offshore wind and CCGT. Energy Policy 128, 25–35 (2019). DOI: 10.1016/j.enpol.2018.12.044
Kitzing, L. Risk Implications of Energy Policy Instruments (Department of Management Engineering, Technical Univ. of Denmark, 2014).
Design Options for Wind Energy Tenders (EWEA, 2015).
Fitch-Roy, O. An offshore wind union? Diversity and convergence in European offshore wind governance. Clim. Policy 16, 586–605 (2016). DOI: 10.1080/14693062.2015.1117958
Grothe, O. & Müsgens, F. The influence of spatial effects on wind power revenues under direct marketing rules. Energy Policy 58, 237–247 (2013). DOI: 10.1016/j.enpol.2013.03.004
Partridge, I. Cost comparisons for wind and thermal power generation. Energy Policy 112, 272–279 (2018). DOI: 10.1016/j.enpol.2017.10.006
Aldersey-Williams, J. & Rubert, T. Levelised cost of energy – a theoretical justification and critical assessment. Energy Policy 124, 169–179 (2019). DOI: 10.1016/j.enpol.2018.10.004
Heptonstall, P., Steiner, F. & Gross, R. The Costs and Impacts of Intermittency – 2016 Update A UKERC TPA Report (UKERC, 2017).
Cleijne, H. Cost of Offshore Transmission (DNV GL, 2019); https://www.tennet.eu/fileadmin/user_upload/Company/News/Dutch/2019/20190624_DNV_GL_Comparison_Offshore_Transmission_update_French_projects.pdf
Hundleby, G. Dong’s Borssele Costs – A Landmark Dutch Auction by Giles Hundleby (BVG Associates, 2016); https://bvgassociates.com/dongs-borssele-costs/
Müsgens, F. & Riepin, I. Is offshore already competitive? Analyzing German offshore wind auctions. In 2018 15th International Conference on the European Energy Market (EEM) (Eds. Mielczarski, W., Wierzbowski, M. & Olek, B.) 1–6 (IEEE, 2018); 10.1109/EEM.2018.8469851
Egli, F., Steffen, B. & Schmidt, T. S. A dynamic analysis of financing conditions for renewable energy technologies. Nat. Energy 3, 1084–1092 (2018). DOI: 10.1038/s41560-018-0277-y
Energy and Emissions Projections (BEIS, 2019); https://www.gov.uk/government/collections/energy-and-emissions-projections
Pfenninger, S. & Staffell, I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114, 1251–1265 (2016). DOI: 10.1016/j.energy.2016.08.060
Staffell, I. & Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114, 1224–1239 (2016). DOI: 10.1016/j.energy.2016.08.068
Aldersey-Williams, J., Broadbent, I. D. & Strachan, P. A. Analysis of United Kingdom offshore wind farm performance using public data: improving the evidence base for policymaking. Util. Policy 62, 100985 (2020). DOI: 10.1016/j.jup.2019.100985
Smith, A. Offshore Wind Capacity Factors https://energynumbers.info/ (2020).
Saint-Drenan, Y.-M. et al. A parametric model for wind turbine power curves incorporating environmental conditions. Renew. Energy 10.1016/j.renene.2020.04.123 (2020).
Staffell, I. & Green, R. How does wind farm performance decline with age? Renew. Energy 66, 775–786 (2014). DOI: 10.1016/j.renene.2013.10.041
Olauson, J., Mikael, B., Edström, P. & Carlstedr N.-E. Wind turbine performance decline in Sweden. Wind Energy 20, 2049–2053 (2017).
Porté-Agel, F., Bastankhah, M. & Shamsoddin, S. Wind-turbine and wind-farm flows: a review. Bound.-Layer. Meteorol. 174, 1–59 (2020). DOI: 10.1007/s10546-019-00473-0
Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019). DOI: 10.1038/s41558-019-0622-6
Hdidouan, D. & Staffell, I. The impact of climate change on the levelised cost of wind energy. Renew. Energy 101, 575–592 (2017). DOI: 10.1016/j.renene.2016.09.003
Ziegler, L. Assessment of Monopiles for Lifetime Extension of Offshore Wind Turbines. Thesis, Norwegian Univ. of Science and Technology (2018).
Geuss, M. Offshore, Act Two: New owner repowers 20-year-old wind farm off Swedish coast. Ars Technica (2018); https://arstechnica.com/information-technology/2018/12/offshore-act-two-new-owner-repowers-20-year-old-wind-farm-off-swedish-coast/
Smith, P., Costa-Ros, M., Lange, B., Stiesdal, H. & Pollicino, F. Question of the week: are offshore projects built to last? Windpower Monthly (2014); https://www.windpowermonthly.com/article/1320109/question-week-offshore-projects-built-last
Foxwell, D. Research claims 30-year lifespan is within reach for offshore wind projects. Riviera Maritime Media (2017); https://www.rivieramm.com/news-content-hub/research-claims-30-year-lifespan-is-within-reach-for-offshore-wind-projects-28324
Kolios, A. & Martínez Luengo, M. The end of the line for today’s wind turbines. Renewable Energy Focus (2016); http://www.renewableenergyfocus.com/view/43817/the-end-of-the-line-for-today-s-wind-turbines/
Wiese, F. et al. Open Power System Data—Frictionless data for electricity system modelling. Appl. Energy 236, 401–409 (2019). DOI: 10.1016/j.apenergy.2018.11.097
Capros, P. et al. EU Reference Scenario 2016 (European Commission, 2016); https://doi.org/10.2833/9127
Twomey, P. & Neuhoff, K. Wind power and market power in competitive markets. Energy Policy 38, 3198–3210 (2010). DOI: 10.1016/j.enpol.2009.07.031
Engelhorn, T. & Müsgens, F. How to estimate wind-turbine infeed with incomplete stock data: a general framework with an application to turbine-specific market values in Germany. Energy Econ. 72, 542–557 (2018). DOI: 10.1016/j.eneco.2018.04.022
Collins, S., Deane, P., Ó Gallachóir, B., Pfenninger, S. & Staffell, I. Impacts of inter-annual wind and solar variations on the European power system. Joule 2, 2076–2090 (2018). DOI: 10.1016/j.joule.2018.06.020
Future Energy Scenarios 2019 162 (National Grid, 2019); https://www.nationalgrideso.com/sites/eso/files/documents/fes-2019.pdf
Official Exchange Rate (LCU per US$, Period Average). World Bank Database (World Bank, 2019); https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=GB-DK-XC
Inflation, GDP Deflator (Annual %). World Bank Database (World Bank, 2019); https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG?end=2017&locations=DE-DK-BE-GB-NL&name_desc=false&page=2&start=1971&view=chart
Alcidi, C., Busse, M. & Gros, D. Is There a Need for Additional Monetary Stimulus? Insights from the Original Taylor Rule CEPS Policy Brief (CEPS, 2016); https://www.ceps.eu/wp-content/uploads/2016/04/PB342TaylorRule.pdf
Wind Energy in Europe in 2018 – Trends and Statistics (WindEurope, 2018); https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2018.pdf