[en] This work aims at understanding the effect of the mesopore volume of ordered mesoporous carbons (OMCs) on their behavior as anodes for Li-ion batteries. To that purpose, the hard-templating method was used as an enabling tool, with the controlled partial etching of the silica template to prepare a series of OMCs with a wide range of mesopore volumes. The formed carbon-silica hybrids were processed into electrodes using a water-based ink preparation route in the presence of xanthan gum as a binder, which retained access to the pores after formation of the electrodes. The pore texture of the latter was compared to that of the starting powders. A very good linear relationship could be evidenced between the mesopore volume of the electrodes and the first insertion capacity of Li-ions. The lithium de-insertion also followed a linear trend, but its behavior was dependent on the final applied potential. Indeed, the higher the mesopore volume, the higher the contribution of de-insertion at elevated voltages. This study further points out the importance of the textural characterization of electrodes (instead of just the starting material) as well as the conditions at which the electrochemical measurements are carried out, especially the maximum applied de-insertion voltage.
Disciplines :
Chemistry
Author, co-author :
Léonard, Alexandre ; Université de Liège - ULiège > Department of Chemical Engineering
Castro-Muniz, Alberto; Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Oviedo, Spain
Suarez-Garcia, Fabian; Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Oviedo, Spain
Job, Nathalie ; Université de Liège - ULiège > Department of Chemical Engineering > Ingéniérie électrochimique
Paredes, Juan; Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Oviedo, Spain
Language :
English
Title :
Understanding the effect of the mesopore volume of ordered mesoporous carbons on their electrochemical behavior as Li-ion battery anodes
Kairies, K.P., Magnor, D., Sauer, D.U., Scientific measuring and evaluation program for photovoltaic battery systems (WMEP PV-Speicher). Energy Procedia 73 (2015), 200–207.
Goodenough, J.B., Park, K.-S., The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135 (2013), 1167–1176, 10.1021/ja3091438.
Vasant Kumar, R., Sarakonsri, T., Aifantis, K.E., Hackney, S.A., Vasant-Kumar, R., (eds.) High Energy Density Lithium Batteries, 2010, Wiley-VCH VerlagGmbH|Co. KGaA, Weinheim, 53–80.
Fujimoto, H., Tokumitsu, K., Mabuchi, A., Chinnasamy, N., Kasuh, T., The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. J. Power Sources 195 (2010), 7452–7456, 10.1016/j.jpowsour.2010.05.041.
Ni, J., Huang, Y., Gao, L., A high-performance hard carbon for Li-ion batteries and supercapacitors application. J. Power Sources 223 (2013), 306–311, 10.1016/j.jpowsour.2012.09.047.
Zhou, H., Zhu, S., Hibino, M., Honma, I., Ichihara, M., Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 15 (2003), 2107–2111, 10.1002/adma.200306125.
Li, H.-Q., Liu, R.-L., Zhao, D.-Y., Xia, Y.-Y., Electrochemical properties of an ordered mesoporous carbon prepared by direct tri-constituent co-assembly. Carbon 45 (2007), 2628–2635, 10.1016/j.carbon.2007.08.005.
Eftekhari, A., Fan, Z., Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Mater. Chem. Front. 1 (2017), 1001–1027, 10.1039/c6qm00298f.
Eftekhari, A., Ordered mesoporous materials for lithium-ion batteries. Microporous Mesoporous Mater. 243 (2017), 355–369, 10.1016/j.micromeso.2017.02.055.
Kim, M.S., Bhattacharjyat, D., Fang, B., Yang, D.S., Bae, T.S., Yu, J.S., Morphology dependent Li storage performance of ordered mesoporous carbon as anode material. Langmuir 29:22 (2013), 6754–6761, 10.1021/la401150t.
Guo, R., Lin, R., Yue, W., Ma, H., Enhanced electrochemical performance of mesoporous carbon with increased pore size and decreased pore wall thickness. Electrochim. Acta 174 (2015), 1050–1056, 10.1016/j.electacta.2015.06.113.
Qu, Y., Guo, M., Wang, X., Yuan, C., Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries. J. Alloys Compd. 791 (2019), 874–882, 10.1016/j.allcom.2019.03.370.
Guo, R., Zhao, L., Yue, W., Assembly of core-shell structured porous carbon-graphene composites as anode materials for lithium-ion batteries. Electrochim. Acta 152 (2015), 338–344, 10.1016/j.electacta.2014.11.140.
Saikia, D., Deka, J.R., Chou, C.J., Kao, H.S., 3D interpenetrating cubic mesoporous carbon supported nanosized SnO2 as an efficient anode for high performance lithium-ion batteries. J. Alloys Compd. 791 (2019), 892–904, 10.1016/j.allcom.2019.03.331.
Léonard, A.F., Gommes, C.J., Piedboeuf, M.L., Pirard, J.P., Job, N., Rapid aqueous synthesis of ordered mesoporous carbons: Investigation of synthesis variables and application as anode materials for Li-ion batteries. Microporous Mesoporous Mater. 195 (2014), 92–101, 10.1016/j.micromeso.2014.04.028.
Ma, T.Y., Liu, L., Yuan, Z.Y., Direct synthesis of ordered mesoporous carbons. Chem. Soc. Rev. 42 (2013), 3977–4003, 10.1039/c2cs35301f.
Muylaert, I., Verberckmoes, A., De Decker, J., Van Der Voort, P., Ordered mesoporous phenolic resins: highly versatile and ultra-stable support materials. Adv. Colloid Interface Sci. 175 (2012), 39–51, 10.1016/j.cis.2012.03.007.
Liang, C.D., Li, Z.J., Dai, S., Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. J. Am. Chem. Soc. 128 (2006), 5316–5317, 10.1021/ja060242k.
Zhang, F.Q., Meng, Y., Gu, D., Yan, Y., Yu, C.Z., Tu, B., Zhao, D.Y., A facile aqueous route to synthesize highly ordered mesoporous polymersand carbon frameworks with Ia3d bicontinuous cubic structure. J. Am. Chem. Soc. 127 (2005), 13508–13509, 10.1021/ja0545721.
Zhang, F.Q., Meng, Y., Gu, D., Yan, Y., Chen, Z.X., Tu, B., Zhao, D.Y., An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chem. Mater. 18 (2006), 5279–5288, 10.1021/cm061400+.
Liu, D., Lei, J.H., Guo, L.P., Deng, K.J., Simple hydrothermal synthesis of ordered mesoporous carbons from resorcinol and hexamine. Carbon 49 (2011), 2113–2119, 10.1016/j.carbon.2011.01.047.
Ryoo, R., Joo, S.H., Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103 (1999), 7743–7746, 10.1021/jp991673a.
Inagaki, M., Toyoda, M., Soneda, Y., Tsujimura, S., Morishita, T., Templated mesoporous carbons: synthesis and applications. Carbon 107 (2016), 448–473, 10.1016/j.carbon.2016.06.003.
Castro-Muñiz, A., Lorenzo-Fierro, S., Martínez-Alonso, A., Tascón, J.M.D.D., Fierro, V., Suárez-García, F., Paredes, J.I., Ordered mesoporous carbons obtained from low-value coal tar products for electrochemical energy storage and water remediation. Fuel Process. Technol., 196, 2019, 106152, 10.1016/j.fuproc.2019.106152.
Piedboeuf, M.-L.C., Léonard, A.F., Deschamps, F.L., Job, N., Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. J. Mater. Sci. 51 (2016), 4358–4370, 10.1007/s10853-016-9748-3.
Piedboeuf, M.-L.C., Léonard, A.F., Reichenauer, G., Balzer, C., Job, N., How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries?. Microporous Mesoporous Mater. 275 (2019), 278–287, 10.1016/j.micromeso.2018.08.029.
Nguyen, C., Do, D.D., The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon 39 (2001), 1327–1336, 10.1016/S0008-6223(00)00265-7.
Landmesser, H., Kosslick, H., Storek, W., Fricke, R., Interior surface hydroxyl groups in ordered mesoporous silicates. Solid State Ionics 101–103 (1997), 271–277, 10.1016/s0167-2738(97)84042-8.
Sjöberg, S., Sjijberg, S., Silica in aqueous environments. J. Non-Cryst. Solids 196 (1996), 51–57.
Alexander, G., Heston, W., Iler, R., The solubility of amorphous silica in water. J. Phys. Chem. 58 (1954), 453–455.
Chan, S.H., A review on solubility and polymerization of silica. Geothermics 18 (1989), 49–56.
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87 (2015), 1051–1069.
Parmentier, J., Solovyov, L.A., Ehrburger-Dolle, F., Werckmann, J., Ersen, O., Bley, F., Patarin, J., Structural peculiarities of mesostructured carbons obtained by nanocasting ordered mesoporous templates via carbon chemical vapor or liquid phase infiltration routes. Chem. Mater. 18 (2006), 6316–6323, 10.1021/cm061418k.
Lu, A.H., Schüth, F., Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv. Mater. 18 (2006), 1793–1805, 10.1002/adma.200600148.
Rouquerol, F., Rouquerol, J., Sing, K.S.W., Adsorption by Powders and Porous Solids. 1999, Academic Press, London.
Rey-Raap, N., Piedboeuf, M.-L.C., Arenillas, A., Menendez, J.A., Léonard, A.F., Job, N., Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes. Mater. Des. 109 (2016), 282–288, 10.1016/j.matdes.2016.07.007.
Velez, V., Ramos-Sanchez, G., Lopez, B., Lartundo-Rojas, L., Gonzalez, I., Sierra, L., Synthesis of novel hard carbons and their application as anodes for Li and Na ion batteries. Carbon 147 (2019), 214–226, 10.1016/j.carbon.2019.02.083.
Li, H.H., Wu, X.L., Sun, H.Z., Wang, K., Fan, C.Y., Zhang, L.L., Yang, F.M., Zhang, J.P., Dual-Porosity SiO2/C nanocomposite with enhanced lithium storage performance. J. Phys. Chem. C 119 (2015), 3495–3501, 10.1021/jp511435w.
Zhao, Y., Liu, Z., Zhang, Y., Mentbayeva, A., Wang, X., Maximov, M. Yu, Liu, B., Bakenov, Z., Yin, F., Facile synthesis of SiO2@C nanoparticles anchored on MWNT as high-performance anode materials for Li-ion batteries. Nanoscale Res. Lett., 12, 2017, 459, 10.1186/s11671-017-2226-2.
Lener, G., Garcia-Blanco, A.A., Furlong, O., Nazzarro, M., Sapag, K., Barraco, D.E., Leiva, E.P.M., A silica/carbon composite as anode for lithium-ion batteries with a large rate capability: experiment and theoretical considerations. Electrochim. Acta 279 (2018), 289–300, 10.1016/j.electacta.2018.05.050.