Magnetic phase transitions; Magnetic properties; Ni-substitution; Sol–gel auto-combustion; Y-type hexaferrites; Barium compounds; Combustion; Iron compounds; Magnetic materials; Magnetic susceptibility; Magnetization; Powders; Sols; Strontium compounds; Zinc compounds; Ac susceptibility; Auto combustion; Auto-combustion methods; Ferromagnetic state; Hexa-ferrites; Magnetization values; Structural and magnetic properties; Nickel compounds
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Hemberger, J., Lunkenheimer, P., Fichtl, R., Krug von Nidda, H.-A., Tsurkan, V., Loidl, A., Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4. Nature 434 (2005), 364–367, 10.1038/nature03348.
Cheong, S.-W., Mostovoy, M., Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6 (2007), 13–20, 10.1038/nmat1804.
Gich, M., Fina, I., Morelli, A., Sánchez, F., Alexe, M., Gàzquez, J., Fontcuberta, J., Roig, A., Multiferroic iron oxide thin films at room temperature. Adv. Mater. 26 (2014), 4645–4652, 10.1002/adma.201400990.
Kimura, T., Lawes, G., Ramirez, A.P., Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures. Phys. Rev. Lett., 94, 2005, 137201, 10.1103/PhysRevLett.94.137201.
Ishiwata, Sh., Taguchi, Y., Murakawa, H., Onose, Y., Tokura, Y., Low-magnetic-field control of electric polarization vector in a helimagnet. Science 319 (2008), 1643–1646, 10.1126/science.1154507.
Shen, S., Chai, Y., Sun, Y., Nonvolatile electric-field control of magnetization in a Y-type Hexaferrite. Sci. Rep., 5, 2015, 8254, 10.1038/srep08254.
Chun, S.H., Chai, Y.Sh., Jeon, B.-G., Kim, H.J., Oh, Y.S., Kim, I., Kim, H., Jeon, B.J., Haam, S.Y., Park, J.-Y., Lee, S.H., Chung, J.-H., Park, J.-H., Kim, K.H., Electric field control of nonvolatile four-state magnetization at room temperature. Phys. Rev. Lett., 108, 2012, 177201, 10.1103/PhysRevLett.108.177201.
Chai, Y.S., Kwon, S., Chun, S.H., Kim, I., Jeon, B.-G., Kim, K.H., Lee, S., Electrical control of large magnetization reversal in a helimagnet. Nature Comm., 5, 2014, 4208, 10.1038/ncomms5208.
Okumura, K., Haruki, K., Ishikura, T., Hirose, S., Kimura, T., Multilevel magnetization switching by electric field in c-axis oriented polycrystalline Z-type hexaferrite. Appl. Phys. Lett., 103, 2013, 032906, 10.1063/1.4816268.
Hirose, S., Haruki, K., Ando, A., Kimura, T., Mutual control of magnetization and electrical polarization by electric and magnetic fields at room temperature in Y-type BaSrCo2−xZnxFe11AlO22 ceramics. Appl. Phys. Lett., 104, 2014, 022907, 10.1063/1.4862432.
R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Prog. Mater. Sci. 57 (2012) 1191–1334. https://doi. org/10.1016/j.pmatsci.2012.04.001.
Kouřil, K., Chlan, V., Štěpánková, H., Novák, P., Knížek, K., Hybler, J., Kimura, T., Hiraoka, Y., Buršík, J., Hyperfine interactions in magnetoelectric hexaferrite system. J. Magn. Magn. Mater. 322 (2010), 1243–1245, 10.1016/j.jmmm. 2009.03.011.
Kouřil, K., Chlan, V., Štěpánková, H., Telfah, A., Novák, P., Knížek, K., Hiraoka, Y., Kimura, T., Distribution of Zn in magnetoelectric Y-type hexaferrite. Acta Phys. Pol. A 118 (2010), 732–733.
Gorter, E.W., Saturation magnetization of some ferrimagnetic oxides with hexagonal crystal structures. Proc. IEE - Part B: Radio and Electron. Eng. 104 (1957), 255–260, 10.1049/pi-b-1.1957.0042.
Taniguchi, K., Abe, N., Ohtani, S., Umetsu, H., Arima, T., Ferroelectric polarization reversal by a magnetic field in multiferroic Y-type hexaferrite Ba2Mg2Fe12O22. Appl. Phys. Express, 1, 2008, 031301, 10.1143/APEX.1.031301.
Pollert, E., Crystal chemistry of magnetic oxides part 2: Hexagonal ferrites. Prog. Cryst. Growth Charact. 11 (1985), 155–205, 10.1016/0146-3535(85)90033-4.
N. Momozawa, Y. Yamaguchi, H. Takei, M. Mita, Magnetic structure of (Ba1-xSrx)2Zn2Fe12O22 (x=0-1.0), J. Phys. Soc. Jap. 54 (1985) 771–780. https://doi.org/10.1143/JPSJ.54.771.
Chai, Y.S., Chun, S.H., Haam, S.Y., Oh, Y.S., Kim, I., Kim, K.H., Low-magnetic-field control of dielectric constant at room temperature realized in Ba0.5Sr1.5Zn2Fe12O22. New J. Phys., 11, 2009, 073030, 10.1088/1367-2630/11/7/073030.
Corso, S., Tailhades, Ph., Pasquet, I., Rousset, A., Laurent, V., Gabriel, A., Condolf, C., Preparation conditions of pure and stoichiometric NixFe3−xO4 bulk ceramics. Solid State Sci. 6 (2004), 791–798, 10.1016/j.solidstatesciences.2004.03.037.
Warhate, V.V., Badwaik, D.S., Structural, magnetic and thermomagnetic properties of strontium NiMn Y-Type nano-hexaferrite. J. Alloy. Comp., 818, 2020, 152830, 10.1016/j.jallcom.2019.152830.
Hiraoka, Y., Nakamura, H., Soda, M., Wakabayashi, Y., Kimura, T., Magnetic and magnetoelectric properties of Ba2-xSrxNi2Fe12O22 single crystals with Y-type hexaferrite structure. J. Appl. Phys., 110, 2011, 033920, 10.1063/1.3622332.
El Hiti, M.A., Abo El Ata, A.M., Semiconductivity in Ba2Ni2-xZnxFe12O22 Y-type hexaferrites. J. Magn. Magn. Mater. 195 (1999), 667–678, 10.1016/S0304-8853(99)00120-1.
Khanduri, H., Chandra Dimri, M., Kooskora, H., Heinmaa, I., Viola, G., Ning, H., Reece, M.J., Krustok, J., Stern, R., Structural, dielectric, magnetic, and nuclear magnetic resonance studies of multiferroic Y-type hexaferrites. J. Appl. Phys., 112, 2012, 073903, 10.1063/1.4754532.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.