[en] Animal venoms are rich in hundreds of toxins with extraordinary biological activities. Their exploitation is difficult due to their complexity and the small quantities of venom available from most venomous species. We developed a Venomics approach combining transcriptomic and proteomic characterization of 191 species and identified 20,206 venom toxin sequences. Two complementary production strategies based on solid-phase synthesis and recombinant expression in E. coli generated a physical bank of 3,597 toxins. Screened on hMC4R, this bank gave an incredible hit rate of 8%. Here, we focus on two novel toxins: N-TRTX-Preg1a, exhibiting an inhibitory cystine knot (ICK) motif, and N-BUTX-Ptr1a, a short scorpion-CSαβ structure. Neither N-TRTX-Preg1a nor N-BUTX-Ptr1a affect ion channels, the known targets of their toxin scaffolds, but bind to four melanocortin receptors with low micromolar affinities and activate the hMC1R/Gs pathway. Phylogenetically, these two toxins form new groups within their respective families and represent novel hMC1R agonists, structurally unrelated to the natural agonists.
A Venomics approach coupled to high-throughput toxin production strategies identifies the first venom-derived melanocortin receptor agonists.
Publication date :
July 2020
Journal title :
Journal of Medicinal Chemistry
ISSN :
0022-2623
eISSN :
1520-4804
Publisher :
American Chemical Society, United States
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 278346 - VENOMICS - High-throughput peptidomics and transcriptomics of animal venoms for discovery of novel therapeutic peptides and innovative drug development
Jenner, R. A.; Undheim, E. Venom: The Secrets of Nature's Deadliest Weapon; Smithsonian Books: 2017.
Degueldre, M.; Verdenaud, M.; Legarda, G.; Minambres, R.; Zuniga, S.; Leblanc, M.; Gilles, N.; Ducancel, F.; De Pauw, E.; Quinton, L. Diversity in Sequences, Post-Translational Modifications and Expected Pharmacological Activities of Toxins from Four Conus Species Revealed by the Combination of Cutting-Edge Proteomics, Transcriptomics and Bioinformatics. Toxicon 2017, 130, 116-125, 10.1016/j.toxicon.2017.02.014
Beraud, E.; Chandy, K. G. Therapeutic Potential of Peptide Toxins That Target Ion Channels. Inflamm. Allergy Drug Targets 2011, 10, 322-342, 10.2174/187152811797200696
Lewis, R. J.; Dutertre, S.; Vetter, I.; Christie, M. J. Conus Venom Peptide Pharmacology. Pharmacol. Rev. 2012, 64, 259-298, 10.1124/pr.111.005322
Servent, D.; Fruchart-Gaillard, C. Muscarinic Toxins: Tools for the Study of the Pharmacological and Functional Properties of Muscarinic Receptors. J. Neurochem. 2009, 109, 1193-1202, 10.1111/j.1471-4159.2009.06092.x
Ciolek, J.; Reinfrank, H.; Quinton, L.; Viengchareun, S.; Stura, E. A.; Vera, L.; Sigismeau, S.; Mouillac, B.; Orcel, H.; Peigneur, S.; Tytgat, J.; Droctové, L.; Beau, F.; Nevoux, J.; Lombès, M.; Mourier, G.; De Pauw, E.; Servent, D.; Mendre, C.; Witzgall, R.; Gilles, N. Green Mamba Peptide Targets Type-2 Vasopressin Receptor against Polycystic Kidney Disease. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7154-7159, 10.1073/pnas.1620454114
Petrel, C.; Hocking, H. G.; Reynaud, M.; Upert, G.; Favreau, P.; Biass, D.; Paolini-Bertrand, M.; Peigneur, S.; Tytgat, J.; Gilles, N.; Hartley, O.; Boelens, R.; Stocklin, R.; Servent, D. Identification, Structural and Pharmacological Characterization of τ-CnVA, a Conopeptide That Selectively Interacts with Somatostatin Sst3Receptor. Biochem. Pharmacol. 2013, 85, 1663-1671, 10.1016/j.bcp.2013.03.019
Rouget, C.; Quinton, L.; Maïga, A.; Gales, C.; Masuyer, G.; Malosse, C.; Chamot-Rooke, J.; Thai, R.; Mourier, G.; De Pauw, E.; Gilles, N.; Servent, D. Identification of a Novel Snake Peptide Toxin Displaying High Affinity and Antagonist Behaviour for the A2-Adrenoceptors. Br. J. Pharmacol. 2010, 161, 1361-1374, 10.1111/j.1476-5381.2010.00966.x
Quinton, L.; Girard, E.; Maiga, A.; Rekik, M.; Lluel, P.; Masuyer, G.; Larregola, M.; Marquer, C.; Ciolek, J.; Magnin, T.; Wagner, R.; Molgó, J.; Thai, R.; Fruchart-Gaillard, C.; Mourier, G.; Chamot-Rooke, J.; Ménez, A.; Palea, S.; Servent, D.; Gilles, N. Isolation and Pharmacological Characterization of AdTx1, a Natural Peptide Displaying Specific Insurmountable Antagonism of the α 1A-Adrenoceptor. Br. J.Pharmacol. 2010, 159, 316-325, 10.1111/j.1476-5381.2009.00532.x
Jolkkonen, M.; Adem, A.; Hellman, U.; Wernstedt, C.; Karlsson, E. A Snake Toxin against Muscarinic Acetylcholine Receptors: Amino Acid Sequence, Subtype Specificity and Effect on Guinea-Pig Ileum. Toxicon 1995, 33, 399-410, 10.1016/0041-0101(94)00102-e
Cologna, C. T.; dos Santos Cardoso, J.; Jourdan, E.; Degueldre, M.; Upert, G.; Gilles, N.; Uetanabaro, A. P. T.; Costa Neto, E. M.; Thonart, P.; de Pauw, E.; Quinton, L. Peptidomic Comparison and Characterization of the Major Components of the Venom of the Giant Ant Dinoponera Quadriceps Collected in Four Different Areas of Brazil. J. Proteomics 2013, 94, 413-422, 10.1016/j.jprot.2013.10.017
Kumar, V. A.; Wickremasinghe, N. C.; Shi, S.; Hartgerink, J. D. Nanofibrous Snake Venom Hemostat. ACS Biomater. Sci. Eng. 2015, 1, 1300-1305, 10.1021/acsbiomaterials.5b00356
Pennington, M. W.; Czerwinski, A.; Norton, R. S. Peptide Therapeutics from Venom: Current Status and Potential. Bioorg. Med. Chem. 2018, 26, 2738-2758, 10.1016/j.bmc.2017.09.029
Saez, N. J.; Herzig, V. Versatile Spider Venom Peptides and Their Medical and Agricultural Applications. Toxicon 2019, 158, 109-126, 10.1016/j.toxicon.2018.11.298
Mebs, D. Toxicity in Animals. Trends in Evolution?. Toxicon 2001, 39, 87-96, 10.1016/S0041-0101(00)00155-0
Kaas, Q.; Westermann, J.-C.; Craik, D. J. Conopeptide Characterization and Classifications: An Analysis Using ConoServer. Toxicon 2010, 55, 1491-1509, 10.1016/j.toxicon.2010.03.002
Gilles, N.; Servent, D. The European FP7 Venomics Project. Futur. Med. Chem 2014, 6, 1611-1612, 10.4155/FMC.14.85
Turner, A. H.; Craik, D. J.; Kaas, Q.; Schroeder, C. I. Bioactive Compounds Isolated from Neglected Predatory Marine Gastropods. Mar. Drugs 2018, 16, 118, 10.3390/md16040118
Morsa, D.; Baiwir, D.; La Rocca, R.; Zimmerman, T. A.; Hanozin, E.; Grifnée, E.; Longuespée, R.; Meuwis, M.-A.; Smargiasso, N.; De Pauw, E.; Mazzucchelli, G. Multi-Enzymatic Limited Digestion: The Next-Generation Sequencing for Proteomics?. J. Proteome Res. 2019, 18, 2501-2513, 10.1021/acs.jproteome.9b00044
Dutertre, S.; Jin, A.-h.; Kaas, Q.; Jones, A.; Alewood, P. F.; Lewis, R. J. Deep Venomics Reveals the Mechanism for Expanded Peptide Diversity in Cone Snail Venom. Mol. Cell. Proteomics 2013, 12, 312-329, 10.1074/mcp.M112.021469
Rong, M.; Duan, Z.; Chen, J.; Li, J.; Xiao, Y.; Liang, S. Native Pyroglutamation of Huwentoxin-IV: A Post-Translational Modification That Increases the Trapping Ability to the Sodium Channel. PLoS One 2013, 8, e65984 10.1371/journal.pone.0065984
Lucchesi, K.; Ravindran, A.; Young, H.; Moczydlowski, E. Analysis of the Blocking Activity of Charybdotoxin Homologs and Iodinated Derivatives against Ca2+-Activated K+Channels. J. Membr. Biol. 1989, 109, 269-281, 10.1007/BF01870284
Saez, N. J.; Senff, S.; Jensen, J. E.; Er, S. Y.; Herzig, V.; Rash, L. D.; King, G. F. Spider-Venom Peptides as Therapeutics. Toxins 2010, 2, 2851-2871, 10.3390/toxins2122851
Gao, B.; Harvey, P. J.; Craik, D. J.; Ronjat, M.; De Waard, M.; Zhu, S. Functional Evolution of Scorpion Venom Peptides with an Inhibitor Cystine Knot Fold. Biosci. Rep. 2013, 33, 513-527, 10.1042/BSR20130052
Robinson, S. D.; Norton, R. S. Conotoxin Gene Superfamilies. Mar. Drugs 2014, 12, 6058-6101, 10.3390/md12126058
Imperial, J. S.; Watkins, M.; Chen, P.; Hillyard, D. R.; Cruz, L. J.; Olivera, B. M. The Augertoxins: Biochemical Characterization of Venom Components from the Toxoglossate Gastropod Terebra Subulata. Toxicon 2003, 42, 391-398, 10.1016/S0041-0101(03)00169-7
Lavergne, V.; Harliwong, I.; Jones, A.; Miller, D.; Taft, R. J.; Alewood, P. F. Optimized Deep-Targeted Proteotranscriptomic Profiling Reveals Unexplored Conus Toxin Diversity and Novel Cysteine Frameworks. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E3782-E3791, 10.1073/pnas.1501334112
Upert, G.; Mourier, G.; Pastor, A.; Verdenaud, M.; Alili, D.; Servent, D.; Gilles, N. High-Throughput Production of Two Disulphide-Bridge Toxins. Chem. Commun. 2014, 50, 8408-8411, 10.1039/c4cc02679a
Duhoo, Y.; Sequeira, A. F.; Saez, N. J.; Turchetto, J.; Ramond, L.; Peysson, F.; Brás, J. L. A.; Gilles, N.; Darbon, H.; Fontes, C. M. G. A.; Vincentelli, R. High-Throughput Production of Oxidized Animal Toxins in Escherichia Coli. Methods Mol. Biol. 2019, 2025, 165-190, 10.1007/978-1-4939-9624-7_7
Sequeira, A. F.; Turchetto, J.; Saez, N. J.; Peysson, F.; Ramond, L.; Duhoo, Y.; Blémont, M.; Fernandes, V. O.; Gama, L. T.; Ferreira, L. M. A.; Guerreiro, C. I. P. I.; Gilles, N.; Darbon, H.; Fontes, C. M. G. A.; Vincentelli, R. Gene Design, Fusion Technology and TEV Cleavage Conditions Influence the Purification of Oxidized Disulphide-Rich Venom Peptides in Escherichia Coli. Microb. Cell Fact. 2017, 16, 1-16, 10.1186/s12934-016-0618-0
Turchetto, J.; Sequeira, A. F.; Ramond, L.; Peysson, F.; Brás, J. L. A.; Saez, N. J.; Duhoo, Y.; Blémont, M.; Guerreiro, C. I. P. D.; Quinton, L.; Pauw, E.; Gilles, N.; Darbon, H.; Fontes, C. M. G. A.; Vincentelli, R. High-Throughput Expression of Animal Venom Toxins in Escherichia Coli to Generate a Large Library of Oxidized Disulphide-Reticulated Peptides for Drug Discovery. Microb. Cell Fact. 2017, 16, 1-15, 10.1186/s12934-016-0617-1
Massonnet, P.; Haler, J. R. N.; Upert, G.; Smargiasso, N.; Mourier, G.; Gilles, N.; Quinton, L.; De Pauw, E. Disulfide Connectivity Analysis of Peptides Bearing Two Intramolecular Disulfide Bonds Using MALDI In-Source Decay. J. Am. Soc. Mass Spectrom. 2018, 29, 1995-2002, 10.1007/s13361-018-2022-y
Muratspahić, E.; Freissmuth, M.; Gruber, C. W. Nature-Derived Peptides: A Growing Niche for GPCR Ligand Discovery. Trends Pharmacol. Sci. 2019, 40, 309-326, 10.1016/j.tips.2019.03.004
Liu, Z.; Dai, J.; Dai, L.; Deng, M.; Hu, Z.; Hu, W.; Liang, S. Function and Solution Structure of Huwentoxin-X, a Specific Blocker of N-Type Calcium Channels, from the Chinese Bird Spider Ornithoctonus Huwena. J. Biol. Chem. 2006, 281, 8628-8635, 10.1074/jbc.M513542200
Favreau, P.; Gilles, N.; Lamthanh, H.; Bournaud, R.; Shimahara, T.; Bouet, F.; Laboute, P.; Letourneux, Y.; Ménez, A.; Molgó, J.; Le Gall, F. A New ω-Conotoxin That Targets N-Type Voltage-Sensitive Calcium Channels with Unusual Specificity. Biochemistry 2001, 40, 14567-14575, 10.1021/bi002871r
Huys, I.; Dyason, K.; Waelkens, E.; Verdonck, F.; van Zyl, J.; du Plessis, J.; Müller, G. J.; van der Walt, J.; Clynen, E.; Schoofs, L.; Tytgat, J. Purification, Characterization and Biosynthesis of Parabutoxin 3, a Component of Parabuthus Transvaalicus Venom. Eur. J. Biochem. 2002, 269, 1854-1865, 10.1046/j.1432-1033.2002.02833.x
Papp, F.; Batista, C. V. F.; Varga, Z.; Herceg, M.; Román-González, S. A.; Gaspar, R.; Possani, L. D.; Panyi, G. Tst26, a Novel Peptide Blocker of Kv1.2 and Kv1.3 Channels from the Venom of Tityus Stigmurus. Toxicon 2009, 54, 379-389, 10.1016/j.toxicon.2009.05.023
Rogowski, R. S.; Krueger, B. K.; Collins, J. H.; Blaustein, M. P. Tityustoxin K Alpha Blocks Voltage-Gated Noninactivating K+ Channels and Unblocks Inactivating K+ Channels Blocked by Alpha-Dendrotoxin in Synaptosomes. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 1475-1479, 10.1073/pnas.91.4.1475
Cerni, F. A.; Pucca, M. B.; Peigneur, S.; Cremonez, C. M.; Bordon, K. C. F.; Tytgat, J.; Arantes, E. C. Electrophysiological Characterization of Ts6 and Ts7, K+ Channel Toxins Isolated through an Improved Tityus Serrulatus Venom Purification Procedure. Toxins 2014, 6, 892-913, 10.3390/toxins6030892
Rodrigues, A. R. A.; Arantes, E. C.; Monje, F.; Stühmer, W.; Varanda, W. A. Tityustoxin-K(Alpha) Blockade of the Voltage-Gated Potassium Channel Kv1.3. Br. J. Pharmacol. 2003, 139, 1180-1186, 10.1038/sj.bjp.0705343
Diego-García, E.; Batista, C. V. F.; García-Gómez, B. I.; Lucas, S.; Candido, D. M.; Gómez-Lagunas, F.; Possani, L. D. The Brazilian Scorpion Tityus Costatus Karsch: Genes, Peptides and Function. Toxicon 2005, 45, 273-283, 10.1016/j.toxicon.2004.10.014
Garcia, M. L.; Garcia-Calvo, M.; Hidalgo, P.; Lee, A.; MacKinnon, R. Purification and Characterization of Three Inhibitors of Voltage-Dependent K+ Channels from Leiurus Quinquestriatus Var. Hebraeus Venom. Biochemistry 1994, 33, 6834-6839, 10.1021/bi00188a012
Takacs, Z.; Toups, M.; Kollewe, A.; Johnson, E.; Cuello, L. G.; Driessens, G.; Biancalana, M.; Koide, A.; Ponte, C. G.; Perozo, E.; Gajewski, T. F.; Suarez-Kurtz, G.; Koide, S.; Goldstein, S. A. N. A Designer Ligand Specific for Kv1.3 Channels from a Scorpion Neurotoxin-Based Library. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 22211-22216, 10.1073/pnas.0910123106
Kuzmenkov, A. I.; Grishin, E. V.; Vassilevski, A. A. Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins. Biochemistry 2016, 80, 1764-1799, 10.1134/s0006297915130118
de Oliveira Carvalho, A.; Gomes, V. M. Plant Defensins - Prospects for the Biological Functions and Biotechnological Properties. Peptides 2009, 30, 1007-1020, 10.1016/j.peptides.2009.01.018
Koehbach, J. Structure-Activity Relationships of Insect Defensins. Front. Chem. 2017, 5, 45, 10.3389/fchem.2017.00045
Cornet, B.; Bonmatin, J. M.; Hetru, C.; Hoffmann, J. A.; Ptak, M.; Vovelle, F. Refined Three-Dimensional Solution Structure of Insect Defensin A. Structure 1995, 3, 435-448, 10.1016/S0969-2126(01)00177-0
Feng, B. Y.; Shoichet, B. K. Synergy and Antagonism of Promiscuous Inhibition in Multiple-Compound Mixtures. J. Med. Chem. 2006, 49, 2151-2154, 10.1021/jm060029z
Li, J. W.-H.; Vederas, J. C. Drug Discovery and Natural Products: End of an Era or an Endless Frontier?. Science 2009, 325, 161-165, 10.1126/science.1168243
Bender, A.; Bojanic, D.; Davies, J. W.; Crisman, T. J.; Mikhailov, D.; Scheiber, J.; Jenkins, J. L.; Deng, Z.; Hill, W. A. G.; Popov, M.; Jacoby, E.; Glick, M. Which Aspects of HTS Are Empirically Correlated with Downstream Success?. Curr. Opin. Drug Discovery Dev. 2008, 11, 327-337
Oprea, T. I. Current Trends in Lead Discovery: Are We Looking for the Appropriate Properties?. Mol. Diversity 2002, 5, 199-208, 10.1023/a:1021368007777
Andermann, M. L.; Lowell, B. B. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 2017, 95, 757-778, 10.1016/j.neuron.2017.06.014
Kobayashi, N.; Nakagawa, A.; Muramatsu, T.; Yamashina, Y.; Shirai, T.; Hashimoto, M. W.; Ishigaki, Y.; Ohnishi, T.; Mori, T. Supranuclear Melanin Caps Reduce Ultraviolet Induced DNA Photoproducts in Human Epidermis. J. Invest. Dermatol. 1998, 110, 806-810, 10.1046/j.1523-1747.1998.00178.x
Kadekaro, A. L.; Leachman, S.; Kavanagh, R. J.; Swope, V.; Cassidy, P.; Supp, D.; Sartor, M.; Schwemberger, S.; Babcock, G.; Wakamatsu, K.; Ito, S.; Koshoffer, A.; Boissy, R. E.; Manga, P.; Sturm, R. A.; Abdel-Malek, Z. A. Melanocortin 1 Receptor Genotype: An Important Determinant of the Damage Response of Melanocytes to Ultraviolet Radiation. FASEB J. 2010, 24, 3850-3860, 10.1096/fj.10-158485
Creemers, J. W. M.; Pritchard, L. E.; Gyte, A.; Le Rouzic, P.; Meulemans, S.; Wardlaw, S. L.; Zhu, X.; Steiner, D. F.; Davies, N.; Armstrong, D.; Lawrence, C. B.; Luckman, S. M.; Schmitz, C. A.; Davies, R. A.; Brennand, J. C.; White, A. Agouti-Related Protein Is Posttranslationally Cleaved by Proprotein Convertase 1 to Generate Agouti-Related Protein (AGRP)83-132: Interaction between AGRP83-132and Melanocortin Receptors Cannot Be Influenced by Syndecan-3. Endocrinology 2006, 147, 1621-1631, 10.1210/en.2005-1373
Tota, M. R.; Smith, T. S.; Mao, C.; MacNeil, T.; Mosley, R. T.; Van der Ploeg, L. H.; Fong, T. M. Molecular Interaction of Agouti Protein and Agouti-Related Protein with Human Melanocortin Receptors. Biochemistry 1999, 38, 897-904, 10.1021/bi9815602
Nix, M. A.; Kaelin, C. B.; Ta, T.; Weis, A.; Morton, G. J.; Barsh, G. S.; Millhauser, G. L. Molecular and Functional Analysis of Human β-Defensin 3 Action at Melanocortin Receptors. Chem. Biol. 2013, 20, 784-795, 10.1016/j.chembiol.2013.04.015
Ericson, M. D.; Singh, A.; Tala, S. R.; Haslach, E. M.; Dirain, M. L. S.; Schaub, J. W.; Flores, V.; Eick, N.; Lensing, C. J.; Freeman, K. T.; Smeester, B. A.; Adank, D. N.; Wilber, S. L.; Speth, R.; Haskell-Luevano, C. Human β-Defensin 1 and β-Defensin 3 (Mouse Ortholog MBD14) Function as Full Endogenous Agonists at Select Melanocortin Receptors. J. Med. Chem. 2018, 61, 3738-3744, 10.1021/acs.jmedchem.8b00251
Bolin, K. A.; Anderson, D. J.; Trulson, J. A.; Thompson, D. A.; Wilken, J.; Kent, S. B. H.; Gantz, I.; Millhauser, G. L. NMR Structure of a Minimized Human Agouti Related Protein Prepared by Total Chemical Synthesis. FEBS Lett. 1999, 451, 125-131, 10.1016/s0014-5793(99)00553-0
Schibli, D. J.; Hunter, H. N.; Aseyev, V.; Starner, T. D.; Wiencek, J. M.; McCray, P. B., Jr.; Tack, B. F.; Vogel, H. J. The Solution Structures of the Human Beta-Defensins Lead to a Better Understanding of the Potent Bactericidal Activity of HBD3 against Staphylococcus Aureus. J. Biol. Chem. 2002, 277, 8279-8289, 10.1074/jbc.M108830200
Hruby, V. J.; Wilkes, B. C.; Hadley, M. E.; Al-Obeidi, F.; Sawyer, T. K.; Staples, D. J.; de Vaux, A. E.; Dym, O.; Castrucci, A. M.; Hintz, M. F..alpha.-Melanotropin: The Minimal Active Sequence in the Frog Skin Bioassay. J. Med. Chem. 1987, 30, 2126-2130, 10.1021/jm00394a033
Singh, A.; Haslach, E. M.; Haskell-Luevano, C. Structure-Activity Relationships (SAR) of Melanocortin and Agouti-Related (AGRP) Peptides. Adv. Exp. Med. Biol. 2010, 681, 1-18, 10.1007/978-1-4419-6354-3_1
Sousa, S. R.; Vetter, I.; Lewis, R. J. Venom Peptides as a Rich Source of Cav2.2 Channel Blockers. Toxins 2013, 5, 286-314, 10.3390/toxins5020286
Gasparini, S.; Danse, J. M.; Lecoq, A.; Pinkasfeld, S.; Zinn-Justin, S.; Young, L. C.; de Medeiros, C. C.; Rowan, E. G.; Harvey, A. L.; Ménez, A. Delineation of the Functional Site of α-Dendrotoxin. The Functional Topographies of Dendrotoxins Are Different but Share a Conserved Core with Those of Other Kv1 Potassium Channel-Blocking Toxins. J. Biol. Chem. 1998, 273, 25393-25403, 10.1074/jbc.273.39.25393
Dauplais, M.; Lecoq, A.; Song, J.; Cotton, J.; Jamin, N.; Gilquin, B.; Roumestand, C.; Vita, C.; de Medeiros, C. L.; Rowan, E. G.; Harvey, A. L.; Ménez, A. On the Convergent Evolution of Animal Toxins. Conservation of a Diad of Functional Residues in Potassium Channel-Blocking Toxins with Unrelated Structures. J. Biol. Chem. 1997, 272, 4302-4309, 10.1074/jbc.272.7.4302
Zerbino, D. R.; Birney, E. Velvet: Algorithms for de Novo Short Read Assembly Using de Bruijn Graphs. Genome Res. 2008, 18, 821-829, 10.1101/gr.074492.107
Grabherr, M. G.; Haas, B. J.; Yassour, M.; Levin, J. Z.; Thompson, D. A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; Chen, Z.; Mauceli, E.; Hacohen, N.; Gnirke, A.; Rhind, N.; di Palma, F.; Birren, B. W.; Nusbaum, C.; Lindblad-Toh, K.; Friedman, N.; Regev, A. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644-652, 10.1038/nbt.1883
Saez, N. J.; Nozach, H.; Blemont, M.; Vincentelli, R. High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-Rich Venom Proteins Produced in E. Coli. J. Visualized Exp. 2014, 89, e51464 10.3791/51464
Vranken, W. F.; Boucher, W.; Stevens, T. J.; Fogh, R. H.; Pajon, A.; Llinas, M.; Ulrich, E. L.; Markley, J. L.; Ionides, J.; Laue, E. D. The CCPN Data Model for NMR Spectroscopy: Development of a Software Pipeline. Proteins 2005, 59, 687-696, 10.1002/prot.20449
Rieping, W.; Habeck, M.; Bardiaux, B.; Bernard, A.; Malliavin, T. E.; Nilges, M. ARIA2: Automated NOE Assignment and Data Integration in NMR Structure Calculation. Bioinformatics 2007, 23, 381-382, 10.1093/bioinformatics/btl589
Cornilescu, G.; Delaglio, F.; Bax, A. Protein Backbone Angle Restraints from Searching a Database for Chemical Shift and Sequence Homology. J. Biomol. NMR 1999, 13, 289-302, 10.1023/A:1008392405740
Hutchinson, E. G.; Thornton, J. M. PROMOTIF - a Program to Identify and Analyze Structural Motifs in Proteins. Protein Sci. 1996, 5, 212-220, 10.1002/pro.5560050204
Laskowski, R. A.; Rullmannn, J. A.; MacArthur, M. W.; Kaptein, R.; Thornton, J. M. AQUA and PROCHECK-NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J. Biomol. NMR 1996, 8, 477-486, 10.1007/BF00228148
Zhang, J. H.; Chung, T. D.; Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67-73, 10.1177/108705719900400206
Cheng, Y.-C.; Prusoff, W. H. Relationship between the Inhibition Constant (KI) and the Concentration of Inhibitor Which Causes 50 per Cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22, 3099-3108, 10.1016/0006-2952(73)90196-2
Peigneur, S.; Cheneval, O.; Maiti, M.; Leipold, E.; Heinemann, S. H.; Lescrinier, E.; Herdewijn, P.; De Lima, M. E.; Craik, D. J.; Schroeder, C. I.; Tytgat, J. Where Cone Snails and Spiders Meet: Design of Small Cyclic Sodium-Channel Inhibitors. FASEB J. 2019, 33, 3693-3703, 10.1096/fj.201801909R
King, G. F.; Gentz, M. C.; Escoubas, P.; Nicholson, G. M. A Rational Nomenclature for Naming Peptide Toxins from Spiders and Other Venomous Animals. Toxicon 2008, 52, 264-276, 10.1016/j.toxicon.2008.05.020