Ishihara, H., Takahashi, N., Oguri, S. & Tejima, S. Complete structure of the carbohydrate moiety of stem bromelain. An application of the almond glycopeptidase for structural studies of glycopeptides. J. Biol. Chem. 254, 10715–10719 (1979).
Rowan, A. D. & Buttle, D. J. Pineapple cysteine endopeptidases. Methods Enzymol. 244, 555–568 (1994). DOI: 10.1016/0076-6879(94)44040-9
Napper, A., Bennett, S. & Borowski, M. Purification and characterization of multiple forms of the pineapple-stem-derived cysteine proteinases ananain and comosain. Biochem. J. 301(Pt3), 727–735 (1994). DOI: 10.1042/bj3010727
Lenarčič, B., Ritonja, A., Turk, B., Dolenc, I. & Turk, V. Characterization and structure of pineapple stem inhibitor of cysteine proteinases. Biol. Chem. Hoppe Seyler 373, 459–464 (1992). DOI: 10.1515/bchm3.1992.373.2.459
Harrach, T. et al. Isolation and partial characterization of basic proteinases from stem bromelain. J. Protein Chem. 14, 41–52 (1995). DOI: 10.1007/BF01902843
Harrach, T. et al. Isolation and characterization of two forms of an acidic bromelain stem proteinase. J. Protein Chem. 17, 351–361 (1998). DOI: 10.1023/A:1022507316434
Hatano, K. I., Kojima, M., Tanokura, M. & Takahashi, K. Solution structure of bromelain inhibitor VI from pineapple stem: Structural similarity with Bowman—Birk trypsin/chymotrypsin inhibitor from soybean. Biochemistry 35, 5379–5384 (1996). DOI: 10.1021/bi952754+
Ota, S., Muta, E., Katahira, Y. & Okamoto, Y. Reinvestigation of fractionation and some properties of the proteolytically active components of stem and fruit bromelains. J. Biochem. 98, 219–228 (1985). DOI: 10.1093/oxfordjournals.jbchem.a135261
Rowan, A. D., Buttle, D. J. & Barrett, A. J. Ananain: A novel cysteine proteinase found in pineapple stem. Arch. Biochem. Biophys. 267, 262–270 (1988). DOI: 10.1016/0003-9861(88)90031-8
Lynn, K. R. The fractionation of bromelain. Anal. Biochem. 77, 33–38 (1977). DOI: 10.1016/0003-2697(77)90287-1
Polgár, L. Isolation of highly active papaya peptidases A and B from commercial chymopapain. BBA Enzymol. 658, 262–269 (1981).
Rowan, A., Buttle, D. & Barrett, A. The cysteine proteinases of the pineapple plant. Biochem. J. 266, 869–875 (1990).
Matagne, A., Bolle, L., El Mahyaoui, R., Baeyens-Volant, D. & Azarkan, M. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms. Phytochemistry 138, 29–51 (2017). DOI: 10.1016/j.phytochem.2017.02.019
Kamphuis, I. G., Drenth, J. & Baker, E. N. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J. Mol. Biol. 182, 317–329 (1985). DOI: 10.1016/0022-2836(85)90348-1
Ritonja, A., Rowan, A., Buttle, D. & Rawlings, N. Stem bromelain: amino acid sequence and implications for weak binding of cystatin. FEBS Lett. 247, 419–424 (1989). DOI: 10.1016/0014-5793(89)81383-3
Maurer, H. R. Bromelain: Biochemistry, pharmacology and medical use. Cell Mol. Life Sci. 58, 1234–1245 (2001). DOI: 10.1007/PL00000936
Rathnavelu, V., Alitheen, N. B., Sohila, S., Kanagesan, S. & Ramesh, R. Potential role of bromelain in clinical and therapeutic applications (review). Biomed. Rep. 5, 283–288 (2016). DOI: 10.3892/br.2016.720
Sancesario, G. M. et al. Bromelain degrades Aβ1-42 monomers and soluble aggregates: an in vitro study in cerebrospinal fluid of Alzheimer’s disease patients. Curr. Alzheimer Res. 15, 628–636 (2018). DOI: 10.2174/1567205015666180123124851
Orlandi-Mattos, P. E. et al. Enkephalin related peptides are released from jejunum wall by orally ingested bromelain. Peptides 115, 32–42 (2019). DOI: 10.1016/j.peptides.2019.02.008
Pillai, K., Akhter, J., Chua, T. C. & Morris, D. L. Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma. Cancer Invest. 31, 241–250 (2013). DOI: 10.3109/07357907.2013.784777
Pillai, K., Ehteda, A., Akhter, J., Chua, T. C. & Morris, D. L. Anticancer effect of bromelain with and without cisplatin or 5-FU on malignant peritoneal mesothelioma cells. Anticancer Drugs 25, 150–160 (2014). DOI: 10.1097/CAD.0000000000000039
Müller, A. et al. Comparative study of antitumor effects of bromelain and papain in human cholangiocarcinoma cell lines. Int. J. Oncol. 48, 2025–2034 (2016). DOI: 10.3892/ijo.2016.3411
Chang, T. C. et al. Bromelain inhibits the ability of colorectal cancer cells to proliferate via activation of ROS production and autophagy. PLoS ONE 14, e0210274 (2019). DOI: 10.1371/journal.pone.0210274
Lee, J. H., Lee, J. T., Park, H. R. & Kim, J. B. The potential use of bromelain as a natural oral medicine having anticarcinogenic activities. Food Sci. Nutr. 7, 1656–1667 (2019). DOI: 10.1002/fsn3.999
Valle, S. J. et al. A novel treatment of bromelain and acetylcysteine (BromAc) in patients with peritoneal mucinous tumours: A phase I first in man study. Eur. J. Surg. Oncol. 10.1016/j.ejso.2019.10.033 (2019). DOI: 10.1016/j.ejso.2019.10.033
Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39 (1998). DOI: 10.1016/S1367-5931(98)80033-1
Choe, Y. et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 281, 12824–12832 (2006). DOI: 10.1074/jbc.M513331200
Gosalia, D. N., Salisbury, C. M., Ellman, J. A. & Diamond, S. L. High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Mol. Cell. Proteom. 4, 626–636 (2005). DOI: 10.1074/mcp.M500004-MCP200
Errasti, M. E. et al. Effects on fibrinogen, fibrin, and blood coagulation of proteolytic extracts from fruits of Pseudananas macrodontes, Bromelia balansae, and B. hieronymi (Bromeliaceae) in comparison with bromelain. Blood Coagul. Fibrinol. 27, 441–449 (2016). DOI: 10.1097/MBC.0000000000000531
Seltzer, A. P. Minimizing post-operative edema and ecchymoses by the use of an oral enzyme preparation (bromelain). A controlled study of 53 rhinoplasty cases. Eye. Ear. Nose Throat Mon. 41, 813–817 (1962).
Golezar, S. Ananas comosus effect on perineal pain and wound healing after episiotomy: A randomized double-blind placebo-controlled clinical trial. Iran. Red Crescent Med. J. 10.5812/ircmj.21019 (2016). DOI: 10.5812/ircmj.21019
Yongqing, T. et al. Determination of the crystal structure and substrate specificity of ananain. Biochimie 166, 194–202 (2019). DOI: 10.1016/j.biochi.2019.07.011
Ramli, A. N. M., Manas, N. H. A., Hamid, A. A. A., Hamid, H. A. & Illias, R. M. Comparative structural analysis of fruit and stem bromelain from Ananas comosus. Food Chem. 266, 183–191 (2018). DOI: 10.1016/j.foodchem.2018.05.125
Ménard, R. et al. Contribution of the glutamine 19 side chain to transition-state stabilization in the Oxyanion Hole of Papain. Biochemistry 30, 8924–8928 (1991). DOI: 10.1021/bi00101a002
Vernet, T. et al. Structural and functional roles of asparagine 175 in the cysteine protease papain. J. Biol. Chem. 270, 16645–16652 (1995). DOI: 10.1074/jbc.270.28.16645
Rawlings, N. D. & Barrett, A. J. Families of cysteine peptidases. Methods Enzymol. 244, 461–486 (1994). DOI: 10.1016/0076-6879(94)44034-4
Turk, D., Gunčar, G., Podobnik, M. & Turk, B. Revised definition of substrate binding sites of papain-like cysteine proteases. Biol. Chem. 379, 137–147 (1998). DOI: 10.1515/bchm.1998.379.2.137
Khouri, H. E. et al. Engineering of Papain: Selective alteration of substrate specificity by site-directed mutagenesis. Biochemistry 30, 8929–8936 (1991). DOI: 10.1021/bi00101a003
Nägler, D. K. et al. Interdependency of sequence and positional specificities for cysteine proteases of the papain family. Biochemistry 38, 4868–4874 (1999). DOI: 10.1021/bi982632s
Hanada, K. et al. Isolation and characterization of E-64, a new thiol protease inhibitor. Agric. Biol. Chem. 42, 523–528 (1978).
Katunuma, N., Matsunaga, Y., Himeno, K. & Hayashi, Y. Insights into the roles of cathepsins in antigen processing and presentation revealed by specific inhibitors. Biol. Chem. 384, 883–890 (2003). DOI: 10.1515/BC.2003.099
Frydrych, I. & Mlejnek, P. Serine protease inhibitors N-α-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-l-phenylalaninyl-chloromethylketone (TPCK) are potent inhibitors of activated caspase proteases. J. Cell. Biochem. 103, 1646–1656 (2008). DOI: 10.1002/jcb.21550
Asztalos, P., Müller, A., Hölke, W., Sobek, H. & Rudolph, M. G. Atomic resolution structure of a lysine-specific endoproteinase from Lysobacter enzymogenes suggests a hydroxyl group bound to the oxyanion hole. Acta Crystallogr. Sect. D Biol. Crystallogr. 70, 1832–1843 (2014). DOI: 10.1107/S1399004714008463
Drenth, J., Kalk, K. H. & Swen, M. Binding of chloromethyl ketone substrate analogs to crystalline papain. Biochemistry 15, 3731–3738 (1976). DOI: 10.1021/bi00662a014
Gorman, M. A. et al. Structure of the lysine specific protease Kgp from Porphyromonas gingivalis, a target for improved oral health. Protein Sci. 24, 162–166 (2015). DOI: 10.1002/pro.2589
Schröder, E., Phillips, C., Garman, E., Harlos, K. & Crawford, C. X-ray crystallographic structure of a papain-leupeptin complex. FEBS Lett. 315, 38–42 (1993). DOI: 10.1016/0014-5793(93)81128-M
Kerr, I. D. et al. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: Implications for substrate specificity. J. Med. Chem. 52, 852–857 (2009). DOI: 10.1021/jm8013663
Hafner, M., Niepel, M., Chung, M. & Sorger, P. K. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13, 521–527 (2016). DOI: 10.1038/nmeth.3853
Reuven, N., Adler, J., Meltser, V. & Shaul, Y. The Hippo pathway kinase Lats2 prevents DNA damage-induced apoptosis through inhibition of the tyrosine kinase c-Abl. Cell Death Differ. 20, 1330–1340 (2013). DOI: 10.1038/cdd.2013.83
Weerasinghe, P. & Buja, L. M. Oncosis: An important non-apoptotic mode of cell death. Exp. Mol. Pathol. 93, 302–308 (2012). DOI: 10.1016/j.yexmp.2012.09.018
Barrett, A. J. et al. L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins, B, H and L. Biochem. J. 201, 189–198 (1982). DOI: 10.1042/bj2010189
Schechter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967). DOI: 10.1016/S0006-291X(67)80055-X
Harris, J. L. et al. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. U. S. A. 97, 7754–7759 (2000). DOI: 10.1073/pnas.140132697
Sajid, M. & McKerrow, J. H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 120, 1–21 (2002). DOI: 10.1016/S0166-6851(01)00438-8
Gour-Salin, B. J. et al. E64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane] analogues as inhibitors of cysteine proteinases: Investigation of S2 subsite interactions. Biochem. J. 299, 389–392 (1994). DOI: 10.1042/bj2990389
Stubbs, M. T. et al. The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J. 9, 1939–1947 (1990). DOI: 10.1002/j.1460-2075.1990.tb08321.x
Wang, S. X. et al. Structural basis for unique mechanisms of folding and hemoglobin binding by a malarial protease. Proc. Natl. Acad. Sci. USA 103, 11503–11508 (2006). DOI: 10.1073/pnas.0600489103
Gomes, M. T. R., Ribeiro, H. A., Lopes, M. T. P., Guzman, F. & Salas, C. E. Biochemical comparison of two proteolytic enzymes from Carica candamarcensis: Structural motifs underlying resistance to cystatin inhibition. Phytochemistry 71, 524–530 (2010). DOI: 10.1016/j.phytochem.2009.12.018
Pauzi, A. Z. M. et al. Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro. Chin. Med. (United Kingdom) 11, 46 (2016).
Guimarães-Ferreira, C. A. et al. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia 9, 723–733 (2007). DOI: 10.1593/neo.07427
Azarkan, M., Wintjens, R. T., Smolders, N., Nijs, M. & Looze, Y. S-pegylthiopapain, a versatile intermediate for the preparation of the fully active form of the cysteine proteinase archetype. J. Chromatogr. A 724, 185–192 (1996). DOI: 10.1016/0021-9673(95)00910-8
Emi, N., Friedmann, T. & Yee, J. K. Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J. Virol. 65(3), 1202–1207 (1991). DOI: 10.1128/JVI.65.3.1202-1207.1991
Goffart, N. et al. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling. Neuro. Oncol. 17, 81–94 (2015). DOI: 10.1093/neuonc/nou144
Kabsch, W. XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132 (2010). DOI: 10.1107/S0907444909047337
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). DOI: 10.1107/S0021889807021206
Biswas, S., Chakrabarti, C., Kundu, S., Jagannadham, M. V. & Dattagupta, J. K. Proposed amino acid sequence and the 1.63 Å X-ray crystal structure of a plant cysteine protease, ervatamin B: Some insights into the structural basis of its stability and substrate specificity. Proteins Struct. Funct. Genet. 51, 489–497 (2003). DOI: 10.1002/prot.10319
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 352–367 (2012). DOI: 10.1107/S0907444912001308
Vagin, A. A. et al. REFMAC5 dictionary: Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2184–2195 (2004). DOI: 10.1107/S0907444904023510
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501 (2010). DOI: 10.1107/S0907444910007493
Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A. & Vriend, G. Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins Struct. Funct. Genet. 57, 678–683 (2004). DOI: 10.1002/prot.20251