[en] Polarons are physical objects of material science that are hard to capture from first-principles calculations. WO3 is a paradigmatic system to study polarons and here we present calculations of a single self-trapped single polaron in WO3 from density functional theory calculations. Our calculations show that the single polaron is at a higher energy than the fully delocalized solution, in agreement with the experiments where a single polaron is an excited state of WO3. The symmetry-adapted mode decomposition of the polaron distortions shows that, among numerous modes, a polar zone center mode has the largest contribution and can be at the origin of the observed weak ferroelectricity of WO3.
Disciplines :
Physics
Author, co-author :
Bousquet, Eric ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Hamdi, Hanen; University of Liège
Aguado-Puente, Pablo; Queen’s University Belfast > School of Mathematics and Physics
Salje, Ekhard K. H.; University of Cambridge > Department of Earth Sciences
Artacho, Emilio; University of Cambridge > Cavendish Laboratory > Theory of Condensed Matter
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Language :
English
Title :
First-principles characterization of single-electron polaron in WO3
Publication date :
2020
Journal title :
Physical Review Research
eISSN :
2643-1564
Publisher :
American Physical Society (APS), College Park, United States - Maryland
Volume :
2
Pages :
012052(R)
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
We thank S. M. Casassa for her help with the CRYSTAL code and J. M. Perez Mato for discussions regarding the symmetry-adapted mode analysis. H.H., Ph.G., and E.B. acknowledge the FRS-FNRS, the Consortium des Equipements de Calcul Intensif (CECI), funded by the FRS-FNRS (Grants
No. 2.5020.11 and No. 1175545), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No. 1117545), and the ARC project AIMED. E.K.H.S. thanks EPSRC (EP/P024904/1). E.A. acknowledges support by the Spanish Ministerio de Economía y Competitividad under Grant No. FIS2015-64886-C5-1-P. PAP acknowledges
SFI-DfE (Grant No. 15/IA/3160).
C. J. Howard, V. Luca, and K. S. Knight, J. Phys.: Condens. Matter 14, 377 (2002). JCOMEL 0953-8984 10.1088/0953-8984/14/3/308
K. R. Locherer, I. P. Swainson, and E. K. H. Salje, J. Phys.: Condens. Matter 11, 4143 (1999). JCOMEL 0953-8984 10.1088/0953-8984/11/21/303
M. Kawaminami and T. Hirose, J. Phys. Soc. Jpn. 46, 864 (1979). JUPSAU 0031-9015 10.1143/JPSJ.46.864
H. Hamdi, E. K. H. Salje, P. Ghosez, and E. Bousquet, Phys. Rev. B 94, 245124 (2016). 2469-9950 10.1103/PhysRevB.94.245124
S. K. Deb, Sol. Energy Mater. Sol. Cells 92, 245 (2008). SEMCEQ 0927-0248 10.1016/j.solmat.2007.01.026
G. A. Niklasson and C. G. Granqvist, J. Mater. Chem. 17, 127 (2007). JMACEP 0959-9428 10.1039/B612174H
G. A. Niklasson, L. Berggren, and A.-L. Larsson, Sol. Energy Mater. Sol. Cells 84, 315 (2004). SEMCEQ 0927-0248 10.1016/j.solmat.2004.01.045
C. G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201 (2000). SEMCEQ 0927-0248 10.1016/S0927-0248(99)00088-4
C. Sella, M. Maaza, O. Nemraoui, J. Lafait, N. Renard, and Y. Sampeur, Surf. Coat. Technol. 98, 1477 (1998). SCTEEJ 0257-8972 10.1016/S0257-8972(97)00154-0
Y. Zhao, Z. C. Feng, Y. Liang, and H. W. Sheng, Appl. Phys. Lett. 71, 2227 (1997). APPLAB 0003-6951 10.1063/1.120064
E. Salje, Opt. Commun. 24, 231 (1978). OPCOB8 0030-4018 10.1016/0030-4018(78)90126-8
G. Mattoni, A. Filippetti, N. Manca, P. Zubko, and A. D. Caviglia, Phys. Rev. Materials 2, 053402 (2018). 2475-9953 10.1103/PhysRevMaterials.2.053402
R. Chatten, A. V. Chadwick, A. Rougier, and P. J. D. Lindan, J. Phys. Chem. B 109, 3146 (2005). JPCBFK 1520-6106 10.1021/jp045655r
O. Schirmer and E. Salje, Solid State Commun. 33, 333 (1980). SSCOA4 0038-1098 10.1016/0038-1098(80)91164-3
O. F. Schirmer and E. Salje, J. Phys. C 13, L1067 (1980). JPSOAW 0022-3719 10.1088/0022-3719/13/36/005
E. Salje and B. Güttler, Philos. Mag. B 50, 607 (1984). 1364-2812 10.1080/13642818408238882
E. K. H. Salje, Eur. J. Solid State Inorg. Chem. 31, 805 (1994).
A.-L. Larsson, B. E. Sernelius, and G. A. Niklasson, Solid State Ionics 165, 35 (2003). SSIOD3 0167-2738 10.1016/j.ssi.2003.08.017
C. A. Triana, C. G. Granqvist, and G. A. Niklasson, J. Appl. Phys. 118, 024901 (2015). JAPIAU 0021-8979 10.1063/1.4926488
W. Wang, A. Janotti, and C. G. Van de Walle, J. Mater. Chem. C 4, 6641 (2016). 2050-7526 10.1039/C6TC01643J
N. Tsunoda, Y. Kumagai, M. Araki, and F. Oba, Phys. Rev. B 99, 060103 (R) (2019). 2469-9950 10.1103/PhysRevB.99.060103
N. Bondarenko, O. Eriksson, and N. V. Skorodumova, Phys. Rev. B 92, 165119 (2015). PRBMDO 1098-0121 10.1103/PhysRevB.92.165119
S. Tosoni, C. D. Valentin, and G. Pacchioni, J. Phys. Chem. C 118, 3000 (2014). 1932-7447 10.1021/jp4123387
A. D. Walkingshaw, N. A. Spaldin, and E. Artacho, Phys. Rev. B 70, 165110 (2004). PRBMDO 1098-0121 10.1103/PhysRevB.70.165110
A. Erba, J. Baima, I. Bush, R. Orlando, and R. Dovesi, J. Chem. Theory Comput. 13, 5019 (2017). 1549-9618 10.1021/acs.jctc.7b00687
R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, and B. Kirtman, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1360 (2018). 1759-0876 10.1002/wcms.1360
D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Íñiguez, and P. Ghosez, Phys. Rev. B 77, 165107 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.77.165107
J. Bang, Y. Y. Sun, T. A. Abtew, A. Samanta, P. Zhang, and S. B. Zhang, Phys. Rev. B 88, 035134 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.88.035134
M. Youssef, B. Yildiz, and K. J. Van Vliet, Phys. Rev. B 95, 161110 (R) (2017). 2469-9950 10.1103/PhysRevB.95.161110
K. Miyata, D. Meggiolaro, M. T. Trinh, P. P. Joshi, E. Mosconi, S. C. Jones, F. De Angelis, and X.-Y. Zhu, Sci. Adv. 3, e1701217 (2017). 10.1126/sciadv.1701217
A. L. Shluger and A. M. Stoneham, J. Phys.: Condens. Matter 5, 3049 (1993). JCOMEL 0953-8984 10.1088/0953-8984/5/19/007
J. Strand, M. Kaviani, D. Gao, A.-M. El-Sayed, V. V. Afanas'ev, and A. L. Shluger, J. Phys.: Condens. Matter 30, 233001 (2018). JCOMEL 0953-8984 10.1088/1361-648X/aac005
O. A. Dicks and A. L. Shluger, J. Phys.: Condens. Matter 29, 314005 (2017). JCOMEL 0953-8984 10.1088/1361-648X/aa7767
K. P. McKenna, M. J. Wolf, A. L. Shluger, S. Lany, and A. Zunger, Phys. Rev. Lett. 108, 116403 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.116403
isotropy software suite, iso.byu.edu.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.012052 for the full symmetry adapted mode decomposition.
A. Aird, M. C. Domeneghetti, F. Mazzi, V. Tazzoli, and E. K. H. Salje, J. Phys.: Condens. Matter 10, L569 (1998). JCOMEL 0953-8984 10.1088/0953-8984/10/33/002
W. H. Sio, C. Verdi, S. Poncé, and F. Giustino, Phys. Rev. Lett. 122, 246403 (2019). PRLTAO 0031-9007 10.1103/PhysRevLett.122.246403
W. H. Sio, C. Verdi, S. Poncé, and F. Giustino, Phys. Rev. B 99, 235139 (2019). 2469-9950 10.1103/PhysRevB.99.235139
F. Wang, C. Di Valentin, and G. Pacchioni, Phys. Rev. B 84, 073103 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.073103
J. F. Janak, Phys. Rev. B 18, 7165 (1978). PRBMDO 0163-1829 10.1103/PhysRevB.18.7165
P. Erhart, A. Klein, D. Åberg, and B. Sadigh, Phys. Rev. B 90, 035204 (2014). PRBMDO 1098-0121 10.1103/PhysRevB.90.035204
G. Geneste, B. Amadon, M. Torrent, and G. Dezanneau, Phys. Rev. B 96, 134123 (2017). 2469-9950 10.1103/PhysRevB.96.134123
C. Escorihuela-Sayalero, J. C. Wojdeł, and J. Íñiguez, Phys. Rev. B 95, 094115 (2017). 2469-9950 10.1103/PhysRevB.95.094115
P. García-Fernández, J. C. Wojdeł, J. Íñiguez, and J. Junquera, Phys. Rev. B 93, 195137 (2016). 2469-9950 10.1103/PhysRevB.93.195137