[en] Ferroelectric tungsten-based Aurivillius oxides are naturally stable superlattice structures, in which A-site deficient perovskite blocks [Wn O3n+1 ]−2 (n = 1, 2, 3, . . . ) interleave with fluorite-like bismuth oxide layers [Bi2O2]+2 along the c-axis. In the n = 2 Bi2W2O9 phase, an in-plane antipolar distortion dominates but there has been controversy as to the ground-state symmetry. Here we show, using a combination of first-principles density functional theory calculations and experiments, that the ground state is a nonpolar phase of Pnab symmetry. We explore the energetics of metastable phases and the potential for antiferroelectricity in this n = 2 Aurivillius phase.
Research Center/Unit :
Physique Théorique des Matériaux
Disciplines :
Physics
Author, co-author :
Djani-Ait, Hania ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
McCabe, Emma; University of Kent > School of Physical Sciences
Zhang, W.; University of Houston > Department of Chemistry,
Halasyamani, P. S.; University of Houston > Department of Chemistry
Feteira, A.; Sheffield Hallam University
Bieder, Jordan ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Bousquet, Eric ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Ghosez, Philippe ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Language :
English
Title :
Bi2W2O9: A potentially antiferroelectric Aurivillius phase
Publication date :
2020
Journal title :
Physical Review. B
ISSN :
2469-9950
eISSN :
2469-9969
Publisher :
American Physical Society
Volume :
101
Pages :
134113
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Funding text :
Computational resources are provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the F.R.S.-FNRS under Grant No. 2.5020.11 and the Tier-1 super- computer of the Fédération Wallonie-Bruxelles funded by the Walloon Region under Grant No 1117545
N. A. Benedek, J. M. Rondinelli, H. Djani, P. Ghosez, and P. Lightfoot, Dalton Trans. 44, 10543 (2015). 1477-9226 10.1039/C5DT00010F
N. A. Benedek and C. J. Fennie, Phys. Rev. Lett. 106, 107204 (2011). PRLTAO 0031-9007 10.1103/PhysRevLett.106.107204
N. A. Benedek, Inorg. Chem. 53, 3769 (2014). INOCAJ 0020-1669 10.1021/ic500106a
C. H. Hervoches and P. Lightfoot, Chem. Mater. 11, 3359 (1999). CMATEX 0897-4756 10.1021/cm991090d
N. C. Hyatt, I. M. Reaney, and K. S. Knight, Phys. Rev. B 71, 024119 (2005). PRBMDO 1098-0121 10.1103/PhysRevB.71.024119
H. Djani, E. Bousquet, A. Kellou, and P. Ghosez, Phys. Rev. B 86, 054107 (2012). PRBMDO 1098-0121 10.1103/PhysRevB.86.054107
R. L. Withers, J. G. Thompson, and A. D. Rae, J. Solid State Chem. 94, 404 (1991). JSSCBI 0022-4596 10.1016/0022-4596(91)90207-X
J. M. Perez-Mato, M. Aroyo, A. Garciá, P. Blaha, K. Schwarz, J. Schweifer, and K. Parlinski, Phys. Rev. B 70, 214111 (2004). PRBMDO 1098-0121 10.1103/PhysRevB.70.214111
J. M. Perez-Mato, P. Blaha, K. Schwarz, M. Aroyo, D. Orobengoa, I. Etxebarria, and A. Garciá, Phys. Rev. B 77, 184104 (2008). PRBMDO 1098-0121 10.1103/PhysRevB.77.184104
H. Okudera, Y. Sakai, K. Yamagata, and H. Takeda, Acta. Cryst. B 74, 295 (2018). 10.1107/S2052520618006133
J.-C. Champarnaud-Mesjard, B. Frit, and A. Watanabe, J. Mater. Chem. 9, 1319 (1999). JMACEP 0959-9428 10.1039/a900992b
Y. Bando, A. Watanabe, Y. Sekikawa, M. Goto, and S. Horiuchi, Acta Cryst. Sect. A 35, 142 (1979). ACACBN 0567-7394 10.1107/S0567739479000255
K. M. Rabe, Antiferroelectricity in oxides: A reexamination, in Functional Metal Oxides (Wiley, 2013), Chap. 7, pp. 221-244.
P. Boullay, J. Tellier, D. Mercurio, M. Manier, F. J. Zuñiga, and J. M. Perez-Mato, Solid State Sci. 14, 1367 (2012). SSSCFJ 1293-2558 10.1016/j.solidstatesciences.2012.07.014
R. Machado, M. G. Stachiotti, R. L. Migoni, and A. H. Tera, Phys. Rev. B 70, 214112 (2004). PRBMDO 1098-0121 10.1103/PhysRevB.70.214112
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). PHRVAO 0031-899X 10.1103/PhysRev.136.B864
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). PHRVAO 0031-899X 10.1103/PhysRev.140.A1133
X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, P. Ghosez, J.-Y. Raty, and D. Allan, Comput. Mater. Sci. 25, 478 (2002). CMMSEM 0927-0256 10.1016/S0927-0256(02)00325-7
X. Gonze, G. M. Rignanese, M. Verstraete, J. M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, P. Ghosez, M. Veithen, J. Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, and D. C. Allan, Z. Kristallogr. 220, 558 (2005).
X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, and J. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009). CPHCBZ 0010-4655 10.1016/j.cpc.2009.07.007
J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008). PRLTAO 0031-9007 10.1103/PhysRevLett.100.136406
M. van Setten, M. Giantomassi, E. Bousquet, M. Verstraete, D. Hamann, X. Gonze, and G.-M. Rignanese, Comput. Phys. Commun. 226, 39 (2018). CPHCBZ 0010-4655 10.1016/j.cpc.2018.01.012
H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976). 0556-2805 10.1103/PhysRevB.13.5188
H. B. Schlegel, J. Comput. Chem. 3, 214 (1982). JCCHDD 0192-8651 10.1002/jcc.540030212
S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001). RMPHAT 0034-6861 10.1103/RevModPhys.73.515
X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997). PRBMDO 0163-1829 10.1103/PhysRevB.55.10355
H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969). JACGAR 0021-8898 10.1107/S0021889869006558
A. A. Coelho, J. Appl. Cryst. 36, 86 (2003). JACGAR 0021-8898 10.1107/S0021889802019878
A. March, Z. Kristallogr. Cryst. Mater. 81, 285 (1932). 2194-4946 10.1524/zkri.1932.81.1.285
W. A. Dollase, J. Appl. Cryst. 19, 267 (1986). JACGAR 0021-8898 10.1107/S0021889886089458
B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, J. Appl. Cryst. 39, 607 (2006). JACGAR 0021-8898 10.1107/S0021889806014075
K. M. Ok, E. O. Chi, and P. S. Halasyamani, Chem. Soc. Rev. 35, 710 (2006). 0306-0012 10.1039/b511119f
H. Hamdi, E. K. H. Salje, P. Ghosez, and E. Bousquet, Phys. Rev. B 94, 245124 (2016). 2469-9950 10.1103/PhysRevB.94.245124
R. Zhang, M. Senn, and M. A. Hayward, Chem. Mater. 28, 8399 (2016). CMATEX 0897-4756 10.1021/acs.chemmater.6b03931
When distinct modes (Equation presented) of a given symmetry contribute to the same distortion (Equation presented), their total contribution corresponds to (Equation presented).
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevB.101.134113 for refinement details for (Equation presented) and (Equation presented) models, analysis of variable temperature XRPD data for (Equation presented), SHG tests and dielectric measurements for (Equation presented) and (Equation presented), comments on criteria for antiferroelectricity, details of the relative contribution of the different modes involved in the distortions and the schematic antipolar displacement in (Equation presented).
M. Mackza, L. Macalik, and J. Hanuza, J. Raman Spectrosc. 40, 2099 (2009). JRSPAF 0377-0486 10.1002/jrs.2378
R. Resta, M. Posternak, and A. Baldereschi, Phys. Rev. Lett. 70, 1010 (1993). PRLTAO 0031-9007 10.1103/PhysRevLett.70.1010
The computed value of the polarization is at 0 K but typically a good estimate of the experimental value, far enough from the transition temperature.
A. J. Tuxworth, E. E. McCabe, D. G. Free, S. J. Clark, and J. S. O. Evans, Inorg. Chem. 52, 2078 (2013). INOCAJ 0020-1669 10.1021/ic302484x
E. E. McCabe, C. Stock, E. E. Rodriguez, A. S. Wills, J. W. Taylor, and J. S. O. Evans, Phys. Rev. B 89, 100402 (R) (2014). PRBMDO 1098-0121 10.1103/PhysRevB.89.100402
W. C. Hamilton, Acta Cryst. 18, 502 (1965). ACCRA9 0365-110X 10.1107/S0365110X65001081
J. W. Whitaker and A. Jeffery, Acta Cryst. 23, 984 (1967). ACCRA9 0365-110X 10.1107/S0365110X67004165
I. D. Brown and D. Altermatt, Acta Cryst. B 41, 244 (1985). ASBSDK 0108-7681 10.1107/S0108768185002063
N. E. Brese and M. O'Keefe, Acta Cryst. B 47, 192 (1991). ASBSDK 0108-7681 10.1107/S0108768190011041
Bandis, L. Cramer, T. E. Holt, S. C. Langford, and J. T. Dickinson, Appl. Surf. Sci. 197-198, 100 (2002). ASUSEE 0169-4332 10.1016/S0169-4332(02)00311-2
K. S. Knight, Min. Mag. 56, 399 (1992). MNLMBB 0026-461X 10.1180/minmag.1992.056.384.13
D. C. Feteira and A. Sinclair, J. Am. Ceram. Soc. 91, 1338 (2008). JACTAW 0002-7820 10.1111/j.1551-2916.2008.02272.x
S. M. Blake, M. J. Falconer, M. McCreedy, and P. Lightfoot, J. Mater. Chem. 7, 1609 (1997). JMACEP 0959-9428 10.1039/a608059f
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, 2001).
P. Toledano and M. Guennou, Phys. Rev. B 94, 014107 (2016). 2469-9950 10.1103/PhysRevB.94.014107
S. Yoshida, K. Fujita, H. Akamatsu, O. Hernandez, A. S. Gupta, F. G. Brown, H. Padmanabhan, A. S. Gibbs, T. Kuge, R. Tsuji, S. Murai, J. M. Rondinelli, V. Gopalan, and K. Tanaka, Adv. Funct. Mater. 28, 1801856 (2018). 1616-301X 10.1002/adfm.201801856
S. Yoshida, H. Akamatsu, R. Tsuji, O. Hernandez, H. Padmanabhan, A. S. Gupta, A. S. Gibbs, K. Mibu, S. Murai, J. M. Rondinelli, V. Gopalan, K. Tanaka, and K. Fujita, J. Am. Chem. Soc. 140, 15690 (2018). JACSAT 0002-7863 10.1021/jacs.8b07998
N. A. McDowell, K. S. Knight, and P. Lightfoot, Chem. Eur. J. 12, 1493 (2006). CEUJED 0947-6539 10.1002/chem.200500904
X. Tian, Z. Gao, F. Chen, Q. Wu, C. Li, W. Lu, Y. Sun, and X. Tao, CrystEngComm 20, 2669 (2018). 1466-8033 10.1039/C8CE00189H