Gravesteijn, Benjamin Y.; Departments of Public Health, Erasmus MC – University Medical Centre Rotterdam, Postbus 2040, Rotterdam, CA 3000, Netherlands
Nieboer, Daan; Departments of Public Health, Erasmus MC – University Medical Centre Rotterdam, Rotterdam, Netherlands
Ercole, Ari; Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
Lingsma, Hester F.; Departments of Public Health, Erasmus MC – University Medical Centre Rotterdam, Rotterdam, Netherlands
Nelson, David W.; Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
van Calster, Ben; Department of Development and Regeneration, KU Leuven, Belgium, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
Steyerberg, E. W.; Departments of Public Health, Erasmus MC – University Medical Centre Rotterdam, Rotterdam, Netherlands, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
Åkerlund, Cecilia
Amrein, Krisztina
Andelic, Nada
Andreassen, Lasse
Anke, Audny
Antoni, Anna
Audibert, Gérard
Azouvi, Philippe
Azzolini, Maria Luisa
Bartels, Ronald
Barzó, Pál
Beauvais, Romuald
Beer, Ronny
Bellander, Bo Michael
Belli, Antonio
Benali, Habib
Berardino, Maurizio
Beretta, Luigi
Blaabjerg, M.
Bragge, P.
Brazinova, A.
Brinck, V.
Brooker, J.
Brorsson, C.
Buki, A.
Bullinger, M.
Cabeleira, M.
Caccioppola, A.
Calappi, E.
Calvi, M. R.
Cameron, P.
Lozano, G. C.
Carbonara, M.
Chevallard, G.
Chieregato, A.
Citerio, G.
Cnossen, M.
Coburn, M.
Coles, J.
Cooper, D. J.
Correia, M.
Čović, A.
Curry, N.
Czeiter, E.
Czosnyka, M.
Dahyot-Fizelier, C.
Dawes, H.
De Keyser, Véronique ; Université de Liège - ULiège > Département de Psychologie > Département de Psychologie
Degos, V.
Della Corte, F.
Boogert, H. D.
Depreitere, B.
Đilvesi, Đ.
Dixit, A.
Donoghue, E.
Guy-Loup Dulière, J. D.
Esser, P.
Martin Fabricius, E. E.
Feigin, Kelly Foks; V.L.
Frisvold, S.
Furmanov, A.
Gagliardo, P.
Galanaud, D.
Gantner, D.
Gao, G.
George, Pradeep
Ghuysen, Alexandre ; Université de Liège - ULiège > Département des sciences de la santé publique > Simulation médicale en situation critique
Giga, L.
Glocker, B.
Golubovic, J.
Gomez, P. A.
Gratz, J.
Gravesteijn, B.
Grossi, F.
Gruen, R. L.
Gupta, D.
Haagsma, J. A.
Haitsma, I.
Helbok, R.
Helseth, E.
Horton, L.
Huijben, J.
Hutchinson, P. J.
Jacobs, B.
Jankowski, S.
Ji-yao Jiang, M. J.
Jones, K.
Karan, M.
Kolias, A. G.
Kompanje, E.
Kondziella, D.
Koraropoulos, E.
Koskinen, L.-O.
Kovács, N.
Lagares, A.
Lanyon, L.
Laureys, Steven ; Université de Liège - ULiège > Giga Consciousness-Coma Science Group
Lecky, F.
Lefering, R.
Legrand, Victor ; Université de Liège - ULiège > Département des sciences cliniques > Département des sciences cliniques
Lejeune, Aurélie
Levi, L.
Lightfoot, R.
Lingsma, H.
Maas, A. I. R.
Castaño-León, A. M.
Maegele, M.
Majdan, M.
Manara, A.
Manley, G.
Martino, C.
Maréchal, H.
Mattern, J.
McMahon, C.
Melegh, B.
Menon, D.
Menovsky, T.
Mulazzi, D.
Muraleedharan, V.
Murray, L.
Nair, N.
Negru, A.
Newcombe, V.
Noirhomme, Quentin ; Université de Liège - ULiège > GIGA CRC In vivo Imaging
Maas, A.I.R., Menon, D.K., Adelson, P.D., Andelic, N., Bell, M.J., Belli, A., et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol, 16, 2017, 987.
Majdan, M., Plancikova, D., Brazinova, A., Rusnak, M., Nieboer, D., Feigin, V., et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Heal 1 (2016), e76–e83.
Saatman, K.E., Duhaime, A., Bullock, R., Maas, A.I., Valadka, A., Manley, G.T., et al. Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25 (2008), 719–738.
Lingsma, H.F., Roozenbeek, B., Steyerberg, E.W., Murray, G.D., Maas, A.I., Early prognosis in traumatic brain injury: from prophecies to predictions. Lancet Neurol 9 (2010), 543–554.
Liu, N.T., Salinas, J., Machine learning for predicting outcomes in trauma. Shock 48 (2017), 504–510.
Burges, C.J.C., A tutorial on support vector machines for pattern recognition. Data Mining Knowledge Discovery 2 (1998), 121–167.
Afanador, N.L., Smolinska, A., Tran, T.N., Blanchet, L., Unsupervised random forest: a tutorial with case studies. J Chemom 30 (2016), 232–241.
Natekin, A., Knoll, A., Gradient boosting machines, a tutorial. Front Neurorobot, 7, 2013, 21.
Rau, C.-S., Kuo, P.-J., Chien, P.-C., Huang, C.-Y., Hsieh, H.-Y., Hsieh, C.-H., Mortality prediction in patients with isolated moderate and severe traumatic brain injury using machine learning models. PLoS One, 13, 2018, e0207192.
Matsuo, K., Aihara, H., Nakai, T., Morishita, A., Tohma, Y., Kohmura, E., Machine learning to predict in-hospital Morbidity and mortality after traumatic brain injury. J Neurotrauma 37 (2018), 202–210.
Feng, J., Wang, Y., Peng, J., Sun, M., Zeng, J., Jiang, H., Comparison between logistic regression and machine learning algorithms on survival prediction of traumatic brain injuries. J Crit Care 54 (2019), 110–116.
van der Ploeg, T., Austin, P.C., Steyerberg, E.W., Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol, 14, 2014, 137.
Christodoulou, E., Jie, M.A., Collins, G.S., Steyerberg, E.W., Verbakel, J.Y., van Calster, B., A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 110 (2019), 12–22.
van Os HJA, Ramos, L.A., Hilbert, A., van Leeuwen, M., van Walderveen, M.A.A., Kruyt, N.D., et al. Predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms. Front Neurol, 9, 2018, 784.
Churpek, M.M., Yuen, T.C., Winslow, C., Meltzer, D.O., Kattan, M.W., Edelson, D.P., Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med 44 (2016), 368–374.
Lee, H.-C., Yoon, S., Yang, S.-M., Kim, W., Ryu, H.-G., Jung, C.-W., et al. Prediction of acute kidney injury after liver transplantation: machine learning approaches vs. logistic regression model. J Clin Med, 7, 2018, 428.
Bisaso, K.R., Karungi, S.A., Kiragga, A., Mukonzo, J.K., Castelnuovo, B., A comparative study of logistic regression based machine learning techniques for prediction of early virological suppression in antiretroviral initiating HIV patients. BMC Med Inform Decis Mak, 18, 2018, 77.
Decruyenaere, A., Decruyenaere, P., Peeters, P., Vermassen, F., Dhaene, T., Couckuyt, I., Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods. BMC Med Inform Decis Mak, 15, 2015, 83.
Harrell, F.E., Regression Modeling Strategies. 2001, Springer New York, New York, NY.
Steyerberg, E.W., Clinical Prediction Models. 2009, Springer New York, New York, NY.
Van Calster, B., Nieboer, D., Vergouwe, Y., De Cock, B., Pencina, M.J., Steyerberg, E.W., A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol 74 (2016), 167–176.
Collins, G.S., Reitsma, J.B., Altman, D.G., Moons, K.G.M., Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement. Ann Intern Med, 162, 2015, 55.
Moons, K.G.M., Kengne, A.P., Grobbee, D.E., Royston, P., Vergouwe, Y., Altman, D.G., et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 98 (2012), 691–698.
Steyerberg, E.W., Mushkudiani, N., Perel, P., Butcher, I., Lu, J., McHugh, G.S., et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med, 5, 2008, e165.
Marmarou, A., Lu, J., Butcher, I., McHugh, G.S., Mushkudiani, N.A., Murray, G.D., et al. IMPACT database of traumatic brain injury: design and description. J Neurotrauma 24 (2007), 239–250.
Maas, A.I.R., Menon, D.K., Steyerberg, E.W., Citerio, G., Lecky, F., Manley, G.T., et al. Collaborative European neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery 76 (2015), 67–80.
Steyerberg, E.W., Clinical prediction models: a practical approach to development, validation and updating. 2009, Springer, New York.
Tibshirani, R., Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58 (1996), 267–288.
FIRTH, D., Bias reduction of maximum likelihood estimates. Biometrika 80 (1993), 27–38.
Rubin, D.B., Multiple imputation for nonresponse in surveys. 2004, John Wiley & Sons, Hoboken, New Jersey.
Buuren, S van, Flexible imputation of missing data. 2018, CRC Press, Cleveland, Ohio.
Royston, P., Parmar, M.K.B., Sylvester, R., Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Stat Med 23 (2004), 907–926.
Steyerberg, E.W., Harrell, F.E., Prediction models need appropriate internal, internal-external, and external validation HHS Public Access. J Clin Epidemiol 69 (2016), 245–247.
Cox, D., Two further applications of a model for binary regression. Biometrika 45 (1958), 562–565.
DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44 (1988), 837–845.
Steyerberg, E.W., Vickers, A.J., Cook, N.R., Gerds, T., Gonen, M., Obuchowski, N., et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 21 (2010), 128–138.
DerSimonian, R., Laird, N., Meta-analysis in clinical trials. Control Clin Trials 7 (1986), 177–188.
Steyerberg, E.W., Vergouwe, Y., Towards better clinical prediction models: Seven steps for development and an ABCD for validation. Eur Heart J 35 (2014), 1925–1931.
Breiman, L., Random Forests. Mach Learn 45 (2001), 5–32.
Probst, P., Boulesteix, A.-L., Bischl, B., Tunability: importance of hyperparameters of machine learning algorithms. J Mach Learn Res 20 (2019), 1–32.
Sakr, S., Elshawi, R., Ahmed, A.M., Qureshi, W.T., Brawner, C.A., Keteyian, S.J., et al. Comparison of machine learning techniques to predict all-cause mortality using fitness data: the Henry ford exercIse testing (FIT) project. BMC Med Inform Decis Mak, 17, 2017, 174.
König, I.R., Malley, J.D., Weimar, C., Diener, H.-C., Ziegler, A., German Stroke Study Collaboration. Practical experiences on the necessity of external validation. Stat Med 26 (2007), 5499–5511.
Thelin, E.P., Nelson, D.W., Vehvilä Inen, J., Nyströ, H., Kivisaari, R., Siironen, J., et al. Evaluation of novel computerized tomography scoring systems in human traumatic brain injury: an observational, multicenter study. PLoS Med, 14, 2017, e1002368.
Ngiam, K.Y., Khor, I.W., Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20 (2019), e262–e273.
van der Ploeg, T., Nieboer, D., Steyerberg, E.W., Modern modeling techniques had limited external validity in predicting mortality from traumatic brain injury. J Clin Epidemiol 78 (2016), 83–89.
Poldrack, R.A., Gorgolewski, K.J., Making big data open: data sharing in neuroimaging. Nat Neurosci 17 (2014), 1510–1517.
Neurology, T.L., The changing landscape of traumatic brain injury research. Lancet Neurol, 11, 2012, 651.
Charles, D., Gabriel, M., Searcy, T., Adoption of electronic health record systems among U.S. non-federal acute care hospitals: 2008-2014. ONC Data Brief 35 (2016), 1–9.
Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med, 1, 2018, 18.
Beam, A.L., Kohane, I.S., Big data and machine learning in health care. JAMA, 319, 2018, 1317.
Delahanty, R.J., Kaufman, D., Jones, S.S., Development and evaluation of an automated machine learning algorithm for in-hospital mortality risk adjustment among critical care patients. Crit Care Med 46 (2018), e481–e488.
Desautels, T., Das, R., Calvert, J., Trivedi, M., Summers, C., Wales, D.J., et al. Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach. BMJ Open, 7, 2017, e017199.
Klau, S., Jurinovic, V., Hornung, R., Herold, T., Boulesteix, A.-L., Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data. BMC Bioinformatics, 19, 2018, 322.
Reps, J.M., Schuemie, M.J., Suchard, M.A., Ryan, P.B., Rijnbeek, P.R., Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data. J Am Med Inform Assoc 25 (2018), 969–975.