Above-ground biomass; Abundance patterns; Arecaceae; Local abiotic conditions; Neotropics; Pantropical biogeography; Tropical rainforest; Wood density
Abstract :
[en] Aim: Palms are an iconic, diverse and often abundant component of tropical ecosystems that provide many ecosystem services. Being monocots, tree palms are evolutionarily, morphologically and physiologically distinct from other trees, and these differences have important consequences for ecosystem services (e.g., carbon sequestration and storage) and in terms of responses to climate change. We quantified global patterns of tree palm relative abundance to help improve understanding of tropical forests and reduce uncertainty about these ecosystems under climate change.
Location: Tropical and subtropical moist forests.
Time period: Current.
Major taxa studied: Palms (Arecaceae).
Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance relative to co-occurring non-palm trees. We compared the relative abundance of tree palms across biogeographical realms and tested for associations with palaeoclimate stability, current climate, edaphic conditions and metrics of forest structure.
Results: On average, the relative abundance of tree palms was more than five times larger between Neotropical locations and other biogeographical realms. Tree palms were absent in most locations outside the Neotropics but present in >80% of Neotropical locations. The relative abundance of tree palms was more strongly associated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, shallower water table and lower plot mean wood density) than metrics of long-term climate stability. Life-form diversity also influenced the patterns; palm assemblages outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we show that tree palms can influence estimates of above-ground biomass, but the magnitude and direction of the effect require additional work.
Conclusions: Tree palms are not only quintessentially tropical, but they are also overwhelmingly Neotropical. Future work to understand the contributions of tree palms to biomass estimates and carbon cycling will be particularly crucial in Neotropical
forests.
Baker, W. J., & Couvreur, T. L. P. (2013). Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Diversification history and origin of regional assemblages. Journal of Biogeography, 40, 286–298. https://doi.org/10.1111/j.1365-2699.2012.02794.x
Banin, L., Lewis, S. L., Lopez-Gonzalez, G., Baker, T. R., Quesada, C. A., Chao, K.-J., … Phillips, O. L. (2014). Tropical forest wood production: A cross-continental comparison. Journal of Ecology, 102, 1025–1037. https://doi.org/10.1111/1365-2745.12263
Bastin, J.-F., Rutishauser, E., Kellner, J. R., Saatchi, S., Pélissier, R., Hérault, B., … Zebaze, D. (2018). Pan-tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 27, 1366–1383. https://doi.org/10.1111/geb.12803
Blach-Overgaard, A., Kissling, W. D., Dransfield, J., Balslev, H., & Svenning, J.-C. (2013). Multimillion-year climatic effects on palm species diversity in Africa. Ecology, 94, 2426–2435. https://doi.org/10.1890/12-1577.1
Brummitt, R. K. (2001). World geographical scheme for recording plant distributions. Pittsburgh, PA: Hunt Institute for Botanical Documentation and Carnegie Mellon University.
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80, 1–28.
Cámara-Leret, R., Faurby, S., Macía, M. J., Balslev, H., Göldel, B., Svenning, J.-C., … Saslis-Lagoudakis, C. H. (2017). Fundamental species traits explain provisioning services of tropical American palms. Nature Plants, 3, 16220. https://doi.org/10.1038/nplants.2016.220
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177–3190. https://doi.org/10.1111/gcb.12629
Cicuzza, D., Krömer, T., Poulsen, A. D., Abrahamczyk, S., Delhotal, T., Piedra, H. M., & Kessler, M. (2013). A transcontinental comparison of the diversity and composition of tropical forest understory herb assemblages. Biodiversity and Conservation, 22, 755–772. https://doi.org/10.1007/s10531-013-0447-y
Costa, F. R. C., Guillaumet, J.-L., Lima, A. P., & Pereira, O. S. (2009). Gradients within gradients: The mesoscale distribution patterns of palms in a central Amazonian forest. Journal of Vegetation Science, 20, 69–78. https://doi.org/10.1111/j.1654-1103.2009.05314.x
Couvreur, T. L. P., Kissling, W. D., Condamine, F. L., Svenning, J.-C., Rowe, N. P., & Baker, W. J. (2015). Global diversification of a tropical plant growth form: Environmental correlates and historical contingencies in climbing palms. Frontiers in Genetics, 5, 452. https://doi.org/10.3389/fgene.2014.00452
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542, 86–90. https://doi.org/10.1038/nature21048
de Castilho, C. V., Magnusson, W. E., de Araújo, R. N. O., Luizão, R. C. C., Luizão, F. J., Lima, A. P., & Higuchi, N. (2006). Variation in aboveground tree live biomass in a central Amazonian forest: Effects of soil and topography. Forest Ecology and Management, 234, 85–96. https://doi.org/10.1016/j.foreco.2006.06.024
Doughty, C. E., Wolf, A., Morueta-Holme, N., Jørgensen, P. M., Sandel, B., Violle, C., … Galetti, M. (2016). Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. Ecography, 39, 194–203. https://doi.org/10.1111/ecog.01587
Dransfield, J., Uhl, N. W., Asmussen, C. B., Baker, W. J., Harley, M. M., & Lewis, C. E. (2008). Genera Palmarum: The evolution and classification of palms. Royal Botanic Gardens, Kew: Kew Publishing.
Eiserhardt, W. L., Svenning, J.-C., Kissling, W. D., & Balslev, H. (2011). Geographical ecology of the palms (Arecaceae): Determinants of diversity and distributions across spatial scales. Annals of Botany, 108, 1391–1416. https://doi.org/10.1093/aob/mcr146
Emilio, T., Quesada, C. A., Costa, F. R. C., Magnusson, W. E., Schietti, J., Feldpausch, T. R., … Phillips, O. L. (2014). Soil physical conditions limit palm and tree basal area in Amazonian forests. Plant Ecology & Diversity, 7, 215–229. https://doi.org/10.1080/17550874.2013.772257
Fan, Y., Li, H., & Miguez-Macho, G. (2013). Global patterns of groundwater table depth. Science, 339, 940–943. https://doi.org/10.1126/science.1229881
Faurby, S., Eiserhardt, W. L., Baker, W. J., & Svenning, J.-C. (2016). An all-evidence species-level supertree for the palms (Arecaceae). Molecular Phylogenetics and Evolution, 100, 57–69. https://doi.org/10.1016/j.ympev.2016.03.002
Faye, A., Pintaud, J.-C., Baker, W. J., Vigouroux, Y., Sonke, B., & Couvreur, T. L. P. (2016). Phylogenetics and diversification history of African rattans (Calamoideae, Ancistrophyllinae). Botanical Journal of the Linnean Society, 182, 256–271. https://doi.org/10.1111/boj.12454
Feldpausch, T. R., Banin, L., Phillips, O. L., Baker, T. R., Lewis, S. L., Quesada, C. A., … Lloyd, J. (2011). Height-diameter allometry of tropical forest trees. Biogeosciences, 8, 1081–1106. https://doi.org/10.5194/bg-8-1081-2011
Feldpausch, T. R., Lloyd, J., Lewis, S. L., Brienen, R. J. W., Gloor, M., Monteagudo Mendoza, A., … Phillips, O. L. (2012). Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012
Gale, N., & Barfod, A. S. (1999). Canopy tree mode of death in a western Ecuadorian rain forest. Journal of Tropical Ecology, 15, 415–436. https://doi.org/10.1017/S0266467499000929
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Goodman, R. C., Phillips, O. L., del Castillo Torres, D., Freitas, L., Cortese, S. T., Monteagudo, A., & Baker, T. R. (2013). Amazon palm biomass and allometry. Forest Ecology and Management, 310, 994–1004. https://doi.org/10.1016/j.foreco.2013.09.045
Higgins, M. A., Ruokolainen, K., Tuomisto, H., Llerena, N., Cardenas, G., Phillips, O. L., … Räsänen, M. (2011). Geological control of floristic composition in Amazonian forests. Journal of Biogeography, 38, 2136–2149. https://doi.org/10.1111/j.1365-2699.2011.02585.x
Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., … Antonelli, A. (2010). Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science, 330(6006), 927–931. https://doi.org/10.1126/science.1194585
Hubau, W., De Mil, T., Van den Bulcke, J., Phillips, O. L., Angoboy Ilondea, B., Van Acker, J., … Beeckman, H. (2019). The persistence of carbon in the African forest understory. Nature Plants, 5, 133–140. https://doi.org/10.1038/s41477-018-0316-5
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., … Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579(7797), 80–87. https://doi.org/10.1038/s41586-020-2035-0.
Hunt, C. O., & Rabett, R. J. (2014). Holocene landscape intervention and plant food production strategies in island and mainland Southeast Asia. Journal of Archaeological Science, 51, 22–33. https://doi.org/10.1016/j.jas.2013.12.011
Kahn, F., & Mejia, K. (1990). Palm communities in wetland forest ecosystems of Peruvian Amazonia. Forest Ecology and Management, 33, 169–179. https://doi.org/10.1016/0378-1127(90)90191-D
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., … Kessler, M. (2017). Climatologies at high resolution for the Earth's land surface areas. Scientific Data, 4, 170122. https://doi.org/10.1038/sdata.2017.122
Kisel, Y., McInnes, L., Toomey, N. H., & Orme, C. D. L. (2011). How diversification rates and diversity limits combine to create large-scale species–area relationships. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1577), 2514–2525. https://doi.org/10.1098/rstb.2011.0022
Kissling, W. D., Baker, W. J., Balslev, H., Barfod, A. S., Borchsenius, F., Dransfield, J., … Svenning, J.-C. (2012). Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 21, 909–921. https://doi.org/10.1111/j.1466-8238.2011.00728.x
Kissling, W. D., Balslev, H., Baker, W. J., Dransfield, J., Göldel, B., Lim, J. Y., … Svenning, J.-C. (2019). PalmTraits 1.0, a species-level functional trait database of palms worldwide. Scientific Data, 6, 178. https://doi.org/10.1038/s41597-019-0189-0
Kissling, W. D., Eiserhardt, W. L., Baker, W. J., Borchsenius, F., Couvreur, T. L. P., Balslev, H., & Svenning, J.-C. (2012). Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences USA, 109, 7379–7384. https://doi.org/10.1073/pnas.1120467109
Levis, C., Costa, F. R. C., Bongers, F., Peña-Claros, M., Clement, C. R., Junqueira, A. B., … ter Steege, H. (2017). Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science, 355(6328), 925–931. https://doi.org/10.1126/science.aal0157
Lewis, S. L., Lopez-Gonzalez, G,, Sonké, B., Affum-Baffoe, K., Baker, T. R., … Wöll, H. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003–1006. https://doi.org/10.1038/nature07771
Lewis, S. L., Lopez-Gonzalez, G,, Sonké, B., Affum-Baffoe, K., Baker, T. R., … Wöll, H. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003–1006. https://doi.org/10.1038/nature07771
Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., … Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120295. https://doi.org/10.1098/rstb.2012.0295
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker, T. R., & Phillips, O. L. (2009) ForestPlots.net Database. Retrieved from www.forestplots.net
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., & Phillips, O. L. (2011). ForestPlots.net: A web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science, 22, 610–613. https://doi.org/10.1111/j.1654-1103.2011.01312.x
Lugo, A. E., & Scatena, F. N. (1996). Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica, 28, 585–599. https://doi.org/10.2307/2389099
Lutz, J. A., Furniss, T. J., Johnson, D. J., Davies, S. J., Allen, D., Alonso, A., … Zimmerman, J. K. (2018). Global importance of large-diameter trees. Global Ecology and Biogeography, 27, 849–864. https://doi.org/10.1111/geb.12747
Malhi, Y., Adu-Bredu, S., Asare, R. A., Lewis, S. L., & Mayaux, P. (2013). African rainforests: Past, present and future. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120312. https://doi.org/10.1098/rstb.2012.0312
MalhiY., Phillips, O. L., Lloyd, J., Baker, T., Wright, J., Almeida, S., … Vinceti B. (2002). An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 13(3), 439–450. https://doi.org/10.1111/j.1654-1103.2002.tb02068.x
Marshall, A. R., Willcock, S., Platts, P. J., Lovett, J. C., Balmford, A., Burgess, N. D., … Lewis, S. L. (2012). Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation, 154, 20–33. https://doi.org/10.1016/j.biocon.2012.03.017
Melo, W. A., Freitas, C. G., Bacon, C. D., & Collevatti, R. G. (2018). The road to evolutionary success: Insights from the demographic history of an Amazonian palm. Heredity, 121, 183–195. https://doi.org/10.1038/s41437-018-0074-1
Moore, H. E. (1973). Palms in the tropical forest ecosystems of Africa and South America. In B. J. Meggers, E. S. Ayensu, & W. D. Duckworth (Eds.), Tropical forest ecosystems in Africa and South America: A comparative review (pp. 63–88). Washington, DC: Smithsonian Institute Press.
Muellner, A. N., Pannell, C. M., Coleman, A., & Chase, M. W. (2008). The origin and evolution of Indomalesian, Australasian and Pacific island biotas: Insights from Aglaieae (Meliaceae, Sapindales). Journal of Biogeography, 35, 1769–1789. https://doi.org/10.1111/j.1365-2699.2008.01935.x
Muscarella, R., Bacon, C. D., Faurby, S., Antonelli, A., Munch Kristiansen, S., Svenning, J.-C., & Balslev, H. (2019). Soil fertility and flood regime are correlated with phylogenetic structure of Amazonian palm communities. Annals of Botany, 123, 641–655. https://doi.org/10.1093/aob/mcy196
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., … Kassem, K. R. (2004). Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Onstein, R. E., Baker, W. J., Couvreur, T. L. P., Faurby, S., Herrera-Alsina, L., Svenning, J.-C., & Kissling, W. D. (2018). To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proceedings of the Royal Society B: Biological Sciences, 285(1880), 20180882. https://doi.org/10.1098/rspb.2018.0882
Onstein, R. E., Baker, W. J., Couvreur, T. L. P., Faurby, S., Svenning, J.-C., & Kissling, W. D. (2017). Frugivory-related traits promote speciation of tropical palms. Nature Ecology & Evolution, 1, 1903–1911. https://doi.org/10.1038/s41559-017-0348-7
Ospina, R., & Ferrari, S. L. P. (2010). Inflated beta distributions. Statistical Papers, 51, 111–126. https://doi.org/10.1007/s00362-008-0125-4
Phillips, O. L., Baker, T. R., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, W. F., … Vinceti, B. (2004). Pattern and process in Amazon tree turnover, 1976–2001. Philosophical Transactions of the Royal Society B: Biological Sciences, 359(1443), 381–407.
Phillips, O. L., Higuchi, N., Vieira, S., Baker, T. R., Chao, K.-J., & Lewis, S. L. (2013). Changes in Amazonian forest biomass, dynamics, and composition, 1980–2002. Amazonia and Global Change, Geophysical Monograph Series, 186, 373–387. https://doi.org/10.1029/2008GM000779
Phillips, O. L., & Miller, J. S. (2002). Global patterns of plant diversity: Alwyn H. Gentry's forest transect data set. St. Louis, MO: Missouri Botanical Press.
Phillips, O. L., Sullivan, M. J. P., Baker, T. R., Monteagudo Mendoza, A., Vargas, P. N., & Vásquez, R. (2019). Species matter: Wood density influences tropical forest biomass at multiple scales. Surveys in Geophysics, 40, 913–935. https://doi.org/10.1007/s10712-019-09540-0
Piperno, D. R., McMichael, C. N. H., & Bush, M. B. (2019). Finding forest management in prehistoric Amazonia. Anthropocene, 26, 100211. https://doi.org/10.1016/j.ancene.2019.100211
Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., … Lloyd, J. (2012). Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9, 2203–2246. https://doi.org/10.5194/bg-9-2203-2012
R Development Core Team (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/
Rakotoarinivo, M., Blach-Overgaard, A., Baker William, J., Dransfield, J., Moat, J., & Svenning, J.-C. (2013). Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: A tropical biodiversity hotspot. Proceedings of the Royal Society B: Biological Sciences, 280(1757), 20123048.
Reichgelt, T., West, C. K., & Greenwood, D. R. (2018). The relation between global palm distribution and climate. Scientific Reports, 8(4721), 1–11. https://doi.org/10.1038/s41598-018-23147-2
Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., & Hérault, B. (2017). Biomass: An R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8, 1163–1167.
Renninger, H. J., & Phillips, N. G. (2016). Palm physiology and distribution in response to global environmental change. In G. Goldstein & L. Santiago (Eds.), Tropical tree physiology (pp. 67–101). Cham, Switzerland: Springer.
Roberts, P., Hunt, C., Arroyo-Kalin, M., Evans, D., & Boivin, N. (2017). The deep human prehistory of global tropical forests and its relevance for modern conservation. Nature Plants, 3, 17093. https://doi.org/10.1038/nplants.2017.93
Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge, UK: Cambridge University Press.
Salm, R. (2005). The importance of forest disturbance for the recruitment of the large arborescent palm Attalea maripa in a seasonally-dry Amazonian forest. Biota Neotropica, 5, 35–41. https://doi.org/10.1590/S1676-06032005000100004
Schietti, J., Emilio, T., Rennó, C. D., Drucker, D. P., Costa, F. R. C., Nogueira, A., … Magnusson, W. E. (2014). Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecology & Diversity, 7, 241–253. https://doi.org/10.1080/17550874.2013.783642
Slik, J. W. F., Franklin, J., Arroyo-Rodríguez, V., Field, R., Aguilar, S., Aguirre, N., … Zang, R. (2018). Phylogenetic classification of the world’s tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 115, 1837–1842. https://doi.org/10.1073/pnas.1714977115
Slik, J. W. F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261–1271. https://doi.org/10.1111/geb.12092
Stan Development Team. (2016). RStan: the R interface to Stan. R package version 2.14.1. Retrieved from http://mc–stan.org/
Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., … Zavala, M. A. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507, 90–93. https://doi.org/10.1038/nature12914
Svenning, J. C. (1999). Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology, 87, 55–65. https://doi.org/10.1046/j.1365-2745.1999.00329.x
Svenning, J.-C. (2001). On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain forest palms (Arecaceae). The Botanical Review, 67, 1–53. https://doi.org/10.1007/BF02857848
Svenning, J.-C., Borchsenius, F., Bjorholm, S., & Balslev, H. (2008). High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography, 35, 394–406. https://doi.org/10.1111/j.1365-2699.2007.01841.x
Tagle Casapia, X., Falen, L., Bartholomeus, H., Cárdenas, R., Flores, G., Herold, M., … Baker, T. R. (2020). Identifying and quantifying the abundance of economically important palms in tropical moist forest using UAV imagery. Remote Sensing, 12, 9. https://doi.org/10.3390/rs12010009
ter Steege, H., Henkel, T. W., Helal, N., Marimon, B. S., Marimon-Junior, B. H., Huth, A., … Melgaço, K. (2019). Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 9, 13822. https://doi.org/10.1038/s41598-019-50323-9
ter Steege, H., Pitman, N. C. A., Phillips, O. L., Chave, J., Sabatier, D., Duque, A., … Vásquez, R. (2006). Continental-scale patterns of canopy tree composition and function across Amazonia. Nature, 443(7110), 444–447. https://doi.org/10.1038/nature05134
ter Steege, H., Pitman, N. C. A., Sabatier, D., Baraloto, C., Salomao, R. P., Guevara, J. E., … Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science, 342(6156), 1243092-1–1243092-9. https://doi.org/10.1126/science.1243092
Tomlinson, P. B. (2006). The uniqueness of palms. Botanical Journal of the Linnean Society, 151, 5–14.
WCSP. (2017). World checklist of selected plant families. Facilitated by the Royal Botanic Gardens, Kew. Retrieved from http://wcsp.science.kew.org/
Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., … Chave, J. (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. https://doi.org/10.5061/dryad.234