Muscente, A. D. et al. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proc. Natl. Acad. Sci. U.S.A. 115, 5217–5222 (2018).
Carmichael, S. K., Waters, J. A., Königshof, P., Suttner, T. J. & Kido, E. Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression. Glob. Planet. Change 183, 102984 (2019).
Joachimski, M. M. & Buggisch, W. Anoxic events in the late Frasnian—Causes of the Frasnian–Famennian faunal crisis?. Geology 21, 675–678 (1993).
Joachimski, M. M. & Buggisch, W. Conodont apatite δ13C signatures indicate climatic cooling as a trigger of the Late Devonian mass extinction. Geology 30, 711–714 (2002).
Whalen, M. T. et al. Chemostratigraphy and magnetic susceptibility of the Late Devonian Frasnian–Famennian transition in western Canada and southern China: Implications for carbon and nutrient cycling and mass extinction. Geol. Soc. London Spec. Publ. 414, 414–418 (2015).
De Vleeschouwer, D. et al. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity. Nat. Commun. 8, 2268 (2017).
Claeys, P., Casier, J.-G. & Margolis, S. V. Microtektites and mass extinctions: Evidence for a Late Devonian asteroid impact. Science 257, 1102–1104 (1992).
McGhee, G. R. The ‘multiple impacts hypothesis’ for mass extinction: A comparison of the Late Devonian and the late Eocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 176, 47–58 (2001).
Racki, G., Rakocinski, M., Marynowski, L. & Wignall, P. B. Mercury enrichments and the Frasnian–Famennian biotic crisis: A volcanic trigger proved?. Geology 46, 543–546 (2018).
Racki, G. A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: More answers than questions?. Glob. Planet. Change 189, 103174 (2020).
Joachimski, M. M., Pancost, R. D., Freeman, K. H., Ostertag-Henning, C. & Buggisch, W. Carbon isotope geochemistry of the Frasnian–Famennian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 91–109 (2002).
Thompson, J. B. & Newton, C. R. Late Devonian mass extinction; episodic climatic cooling or warming? In Devonian of the World (eds McMillen, N. J. et al.) 29–34 (Canadian Society of Petroleum Geologists, Memoirs, Calgary, 1988).
Averbuch, O. et al. Mountain building-enhanced continental weathering and organic carbon burial as major causes for climatic cooling at the Frasnian–Famennian boundary (c. 376 Ma)?. Terra Nov. 17, 25–34 (2005).
Algeo, J. T. & Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes and marine anoxic events. Philos. Trans. R. Soc. Lond. 353, 113–130 (1998).
Becker, R. T. et al. The Devonian Period. The Geologic Time Scale 2012 vols 1–2 (F. M. Gradstein, J. G. Ogg, M. Schmitz and G. Ogg, 2012).
Kaufmann, B. Calibrating the Devonian time scale: A synthesis of U-Pb ID-TIMS ages and conodont stratigraphy. Earth-Sci. Rev. 76, 175–190 (2006).
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The geologic time scale (Cambridge University Press, Cambridge, 2012).
Tucker, R. D. et al. New U-Pb zircon ages and the duration and division of Devonian time. Earth Planet. Sci. Lett. 158, 175–186 (1998).
Kaufmann, B., Trapp, E. & Mezger, K. The numerical age of the upper Frasnian (Upper Devonian) Kellwasser Horizons: A new U-Pb Zircon date from steinbruch Schmidt (Kellerwald, Germany). J. Geol. 112, 495–501 (2004).
Da Silva, A. C. et al. Refining the early Devonian time scale using Milankovitch cyclicity in Lochkovian–Pragian sediments (Prague Synform, Czech Republic). Earth Planet. Sci. Lett. 455, 125 (2016).
Grabowski, J., Narkiewicz, M. & de Vleeschouwer, D. Forcing factors of the magnetic susceptibility signal in lagoonal and subtidal depositional cycles from the Zache mie section (Eifelian, Holy Cross Mountains, Poland). Geol. Soc. Lond. Spec. Publ. 414, 414 (2015).
Pas, D. et al. Cyclostratigraphic calibration of the Famennian stage (Late Devonian, Illinois Basin, USA). Earth Planet. Sci. Lett. 488, 102–114 (2018).
De Vleeschouwer, D. et al. The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland). Earth Planet. Sci. Lett. 365, 25–37 (2013).
Myrow, P. M. et al. High-precision U–Pb age and duration of the latest Devonian (Famennian) Hangenberg event, and its implications. Terra Nov. 26, 222–229 (2014).
Percival, L. M. E. et al. Precisely dating the Frasnian–Famennian boundary: Implications for the cause of the Late Devonian mass extinction. Sci. Rep. 8, 9578 (2018).
Devleeschouwer, X., Herbosch, A. & Preat, A. Microfacies, sequence stratigraphy and clay mineralogy of a condensed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany). Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 171–193 (2002).
Schindler, E. Die Kellwasser-Krise (hohe Frasne-Stufe, Ober Devon). Gött. Arb. Geol. Paläontol. 46, 1–115 (1990).
Feist, R. & Schindler, E. Trilobites during the Frasnian Kellwasser crisis in European Late Devonian cephalopod limestones. Cour. Forsch. Inst. Senckenb. 169, 195–223 (1994).
de Winter, N. J., Sinnesael, M., Makarona, C., Vansteenberge, S. & Claeys, P. Trace element analyses of carbonates using portable and micro-X-ray fluorescence: Performance and optimization of measurement parameters and strategies. J. Anal. At. Spectrom. 32, 1211–1223 (2017).
Friedman, I., O’neil, J. & Cebula, G. Two new carbonate stable-isotope standards. Geostand. Newsl. 6, 11–12 (1982).
Core Team, R. R: A language and environment for computing (2018).
Meyers, S. R. astrochron: An R Package for Astrochronology (2014). https://cran.r-project.org/package=astrochron. Accessed July 13, 2020.
Meyers, S. R. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Sci. Rev. 190, 190–223 (2019).
Meyers, S. R. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: An inverse approach for astrochronologic testing and time scale optimization. Paleoceanography 30, 1625–1640 (2015).
Berger, A., Loutre, M. F. & Laskar, J. Stability of the astronomical frequencies over the earth’s history for paleoclimate studies. Science 255, 560–566 (1992).
Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).
Laskar, J., Fienga, A., Gastineau, M. & Manche, H. La2010: A new orbital solution for the long term motion of the Earth. Astron. Astrophys. 89, 1–15 (2011).
Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
Gouhier, T. C., Grinsted, A. & Viliam, S. R Package biwavelet: Conduct Univariate and Bivariate Wavelet Analyses (2018).
Da Silva, A. C. et al. Magnetic susceptibility as a high-resolution correlation tool and as a climatic proxy in Paleozoic rocks—Merits and pitfalls: Examples from the Devonian in Belgium. Mar. Pet. Geol. 46, 173 (2013).
Calvert, S. E. & Pedersen, T. F. Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application. Dev. Mar. Geol. 1, 567–644 (2007).
Murphy, A. E., Sageman, B. B., Hollander, D. J., Lyons, T. W. & Brett, C. E. Black shale deposition and faunal overturn in the Devonian Appalachian basin: Clastic starvation, seasonal water-column mixing, and efficient biolimiting nutrient recycling. Paleoceanography 15, 280–291 (2000).
Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: Carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).
Wignall, P. B. Model for transgressive black shales?. Geology 19, 167–170 (1991).
Sinnesael, M. et al. The cyclostratigraphy intercomparison project (CIP): Consistency, merits and pitfalls. Earth-Sci. Rev. 199, 102965 (2019).
Herbert, T. D. & Fischer, A. G. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–743 (1986).
Meyers, S. R., Sageman, B. B. & Arthur, M. A. Obliquity forcing of organic matter accumulation during oceanic anoxic event 2. Paleoceanography 27, 1–19 (2012).
Mitchell, R. N. et al. Oceanic anoxic cycles? Orbital prelude to the Bonarelli level (OAE 2). Earth Planet. Sci. Lett. 267, 1–16 (2008).
Gambacorta, G., Menichetti, E., Trincianti, E. & Torricelli, S. Orbital control on cyclical primary productivity and benthic anoxia: Astronomical tuning of the Telychian stage (Early Silurian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 495, 152–162 (2018).
Hilgen, F. J. et al. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett. 136, 495–510 (1995).
Rohling, E. J., Marino, G. & Grant, K. M. Mediterranean climate and oceanography, and the periodic development of anoxic events (sapropels). Earth-Sci. Rev. 143, 62–97 (2015).
Batenburg, S. J. et al. Orbital control on the timing of oceanic anoxia in the Late Cretaceous. Clim. Past 12, 2009–2016 (2016).
De Vleeschouwer, D. & Parnell, A. C. Reducing time-scale uncertainty for the devonian by integrating astrochronology and bayesian statistics. Geology 42, 491–494 (2014).
Blakey, R. C. Global Paleogeography. https://deeptimemaps.com/global-paleogeography-and-tectonics-in-deep-time-series/ (2016). Accessed July 13, 2020.
De Vleeschouwer, D., Whalen, M. T., Day, J. E. & Claeys, P. Cyclostratigraphic calibration of the Frasnian (Late Devonian) time-scale (Western Alberta, Canada). Geol. Soc. Am. Bull. 124, 928–942 (2012).