Lignocellulose exploitation; Heterocoagulation; Bio-template; TiO2; Film microstructures
Abstract :
[en] The heterocoagulation of lignocellulose nanofibers (LCNFs) with functionalized TiO2 nanoparticles (NPs) is presented as an innovative revalorization strategy for the exploitation of lignocellulose pastes. Their use as bio-templates could be considered a promising alternative in a current biorefinery scheme, since the massive production of porous materials in numerous nanotechnological applications, could offer new alternatives of exploitation.
The surface modification of TiO2 NPs by adsorption of polyetilenimine (PEI) favors its anchorage with LCNFs through a peptide bond during heterocoagulation in aqueous suspension. The functionalization of LCNFs with TiO2 NPs results in organic–inorganic core–shell nanostructures, used to shape coatings by dipping, and sinter them at low temperature (450 C).
In this process, the LCNFs were used as endotemplates for shaping stable porous coatings, when they burn during the consolidation of the inorganic structure. In this work, the successful inclusion and homogeneous distribution of biomaterials (LCNF templates) in the semiconductor inorganic microstructure is discussed in terms of dye loading (by UV–Visible Spectroscopy), photovoltaic efficiency and charge transfer (by Electrochemical Impedance Spectroscopy, EIS) in a Dye Sensitized Solar Cell (DSSC).
Results confirm that the TiO2/template network yielded better photoefficiency and electron transport properties than mesoporous films assembled only from TiO2 NPs. The preparation of TiO2-based photoanodes with enhanced performance (with an efficiency value around 6%, for a thickness of 8.7 lm) allows validating the successful colloidal procedure herein employed.
Disciplines :
Chemistry
Author, co-author :
Gonzalez, Zoilo; Instituto De Ceramica y Vidrio - CSIC
Yus, Joaquin; Instituto De Ceramica y Vidrio - CSIC
Bravo, Yessica; Instituto De Ceramica y Vidrio - CSIC
Sanchez-Herencia, Antonio Javier; Instituto De Ceramica y Vidrio - CSIC
Rodriguez, Alejandro; Universidad de Cordoba > Faculty of Science, Chemical Engineering Department
Dewalque, Jennifer ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Manceriu, Laura ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Henrist, Catherine ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Ferrari, Begona; Instituto De Ceramica y Vidrio - CSIC
Language :
English
Title :
Heteroacoagulation of lignocellulose fibers-based biotemplates and functionalized TiO2 nanoparticles to tailor film microstructures
Arevalo-Gallegos A, Ahmad Z, Asgher M et al (2017) Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. Int J Biol Macromol 99:308–318. 10.1016/j.ijbiomac.2017.02.097 DOI: 10.1016/j.ijbiomac.2017.02.097
Asim N, Ahmadi S, Alghoul MA et al (2014) Research and development aspects on chemical preparation techniques of photoanodes for dye sensitized solar cells. Int J Photoenergy. 10.1155/2014/518156 DOI: 10.1155/2014/518156
Bella F, Galliano S, Falco M et al (2017) Approaching truly sustainable solar cells by the use of water and cellulose derivatives. Green Chem 19:1043–1051. 10.1039/c6gc02625g DOI: 10.1039/c6gc02625g
Boury B, Plumejeaou S (2015) Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem 17:72–88. 10.1039/C4GC00957F DOI: 10.1039/C4GC00957F
Cao T, Trefalt G, Borkovec M (2020) Measuring slow heteroaggregation rates in the presence of fast homoaggregation. J Colloid Interface Sci 566:143–152. 10.1016/j.jcis.2020.01.075 DOI: 10.1016/j.jcis.2020.01.075
Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959. 10.1021/cr0500535 DOI: 10.1021/cr0500535
Chen X, Kuo DH, Lu D et al (2016) Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template. Microporous Mesoporous Mater 223:145–151. 10.1016/j.micromeso.2015.11.005 DOI: 10.1016/j.micromeso.2015.11.005
Dewalque J, Cloots R, Mathis F et al (2011) TiO2 multilayer thick films (up to 4 m) with ordered mesoporosity: influence of template on the film mesostructure and use as high efficiency photoelectrode in DSSCs. J Mater Chem 21:7356–7363. 10.1039/c1jm10288e DOI: 10.1039/c1jm10288e
Djellabi R, Yang B, Xiao K et al (2019) Unravelling the mechanistic role of Ti–O–C bonding bridge at titania/lignocellulosic biomass interface for Cr(VI) photoreduction under visible light. J Colloid Interface Sci 553:409–417. 10.1016/j.jcis.2019.06.052 DOI: 10.1016/j.jcis.2019.06.052
Espinosa E, Tarrés Q, Delgado-Aguilar M et al (2016) Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries. Cellulose 23:837–852. 10.1007/s10570-015-0807-8 DOI: 10.1007/s10570-015-0807-8
Espinosa E, Sánchez R, González Z et al (2017a) Rapidly growing vegetables as new sources for lignocellulose nanofibre isolation: physicochemical, thermal and rheological characterisation. Carbohydr Polym 175:27–37. 10.1016/j.carbpol.2017.07.055 DOI: 10.1016/j.carbpol.2017.07.055
Espinosa E, Sánchez R, Otero R et al (2017b) A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. Int J Biol Macromol 103:990–999. 10.1016/j.ijbiomac.2017.05.156 DOI: 10.1016/j.ijbiomac.2017.05.156
Franks GV, Tallon C, Studart AR et al (2017) Colloidal processing: enabling complex shaped ceramics with unique multiscale structures. J Am Ceram Soc 100:458–490. 10.1111/jace.14705 DOI: 10.1111/jace.14705
Ghadiri E, Taghavinia N, Zakeeruddin SM et al (2010) Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers. Nano Lett 10:1632–1638. 10.1021/nl904125q DOI: 10.1021/nl904125q
Gonzalez Z, Perez MJ, Lecue E et al (2016) Procedure for the preparation of synthetized and photoactive ceramic films
Gonzalez Z, Yus J, Sanchez-Herencia AJ et al (2019) A colloidal approach to prepare binder and crack-free TiO2 multilayer coatings from particulate suspensions: application in DSSCs. J Eur Ceram Soc 39:366–375. 10.1016/j.jeurceramsoc.2018.09.018 DOI: 10.1016/j.jeurceramsoc.2018.09.018
González Z, Rodríguez A, Vargas F, Jiménez L (2013) Influence of the operational variables on the pulping and beating of the orange tree pruning. Ind Crops Prod 49:785–789. 10.1016/j.indcrop.2013.06.014 DOI: 10.1016/j.indcrop.2013.06.014
Guo H, Mao R, Yang X, Chen J (2012) Hollow nanotubular SiOx templated by cellulose fibers for lithium ion batteries. Electrochim Acta 74:271–274. 10.1016/j.electacta.2012.04.086 DOI: 10.1016/j.electacta.2012.04.086
Guo J, Filpponen I, Su P et al (2016) Attachment of gold nanoparticles on cellulose nanofibrils via click reactions and electrostatic interactions. Cellulose 23:3065–3075. 10.1007/s10570-016-1042-7 DOI: 10.1007/s10570-016-1042-7
Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-Sensitized Solar Cells. Chem Rev 110:6595–6663. 10.1021/cr900356p DOI: 10.1021/cr900356p
Ivanova A, Fattakhova-Rohlfing D, Kayaalp BE et al (2014) Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J Am Chem Soc 136:5930–5937. 10.1021/ja411292u DOI: 10.1021/ja411292u
Khatri V, Meddeb-Mouelhi F, Beauregard M (2018) New insights into the enzymatic hydrolysis of lignocellulosic polymers by using fluorescent tagged carbohydrate-binding modules. Sustain Energy Fuels 2:479–491. 10.1039/c7se00427c DOI: 10.1039/c7se00427c
Komal GK, Kumar V et al (2020) Encrustation of cadmium sulfide nanoparticles into the matrix of biomass derived silanized cellulose nanofibers for adsorptive detoxification of pesticide and textile waste. Chem Eng J 385:123700. 10.1016/j.cej.2019.123700 DOI: 10.1016/j.cej.2019.123700
Li Z, Yao C, Wang F et al (2014a) Cellulose nanofiber-templated threedimension TiO2 hierarchical nanowire network for photoelectrochemical photoanode. Nanotechnology. 10.1088/0957-4484/25/50/504005 DOI: 10.1088/0957-4484/25/50/504005
Li Z, Yao C, Yu Y et al (2014b) Highly efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO2 photoanodes. Adv Mater 26:2262–2267. 10.1002/adma.201303369 DOI: 10.1002/adma.201303369
Ling C, Li X, Zhang Z et al (2016) High adsorption of sulfamethoxazole by an amine-modified polystyrene-divinylbenzene resin and its mechanistic insight. Environ Sci Technol 50:10015–10023. 10.1021/acs.est.6b02846 DOI: 10.1021/acs.est.6b02846
Lu Y, Sun Q, Liu T et al (2013) Fabrication, characterization and photocatalytic properties of millimeter-long TiO2 fiber with nanostructures using cellulose fiber as a template. J Alloys Compd 577:569–574. 10.1016/j.jallcom.2013.06.183 DOI: 10.1016/j.jallcom.2013.06.183
Maitani MM, Xu C, Hashimoto K et al (2017) Self-oriented TiO2 nanosheets in films for enhancement of electron transport in nanoporous semiconductor networks. Mater Chem Front 1:2094–2102. 10.1039/c7qm00239d DOI: 10.1039/c7qm00239d
Markets and Markets NM (2020) Market Research Report 2020
Phadke S, Du Pasquier A, Birnie DP (2011) Enhanced electron transport through template-derived pore channels in dye-sensitized solar cells. J Phys Chem C 115:18342–18347. 10.1021/jp204974d DOI: 10.1021/jp204974d
Rodrigues CA, Tofanello A, Nantes IL, Rosa DS (2015) Biological oxidative mechanisms for degradation of poly(lactic acid) blended with thermoplastic starch. ACS Sustain Chem Eng 3:2756–2766. 10.1021/acssuschemeng.5b00639 DOI: 10.1021/acssuschemeng.5b00639
Sanchez C, Boissière C, Grosso D et al (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20:682–737. 10.1021/cm702100t DOI: 10.1021/cm702100t
Sangiorgi A, Gonzalez Z, Ferrandez-Montero A et al (2019) 3D printing of photocatalytic filters using a biopolymer to immobilize TiO2 nanoparticles. J Electrochem Soc 166:1–10. 10.1149/2.0341905jes DOI: 10.1149/2.0341905jes
Satari B, Karimi K, Kumar R (2019) Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustain Energy Fuels 3:11–62. 10.1039/c8se00287h DOI: 10.1039/c8se00287h
Selkälä T, Suopajärvi T, Sirviö JA et al (2018) Rapid uptake of pharmaceutical salbutamol from aqueous solutions with anionic cellulose nanofibrils: the importance of pH and colloidal stability in the interaction with ionizable pollutants. Chem Eng J 350:378–385. 10.1016/j.cej.2018.05.163 DOI: 10.1016/j.cej.2018.05.163
Sharifi N, Tajabadi F, Taghavinia N (2014) Recent developments in dye-sensitized solar cells. ChemPhysChem 15:3902–3927. 10.1002/cphc.201402299 DOI: 10.1002/cphc.201402299
Srisasiwimon N, Chuangchote S, Laosiripojana N, Sagawa T (2018) TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals. ACS Sustain Chem Eng 6:13968–13976. 10.1021/acssuschemeng.8b02353 DOI: 10.1021/acssuschemeng.8b02353
Thomas B, Raj MC, Athira BK et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625. 10.1021/acs.chemrev.7b00627 DOI: 10.1021/acs.chemrev.7b00627
Verde M, Peiteado M, Caballero AC et al (2012) Electrophoretic deposition of transparent ZnO thin films from highly stabilized colloidal suspensions. J Colloid Interface Sci 373:27–33. 10.1016/j.jcis.2011.09.039 DOI: 10.1016/j.jcis.2011.09.039
Wang B, Cheng J, Wu Y (2012) Titania nanotube synthesized by a facile, scalable and cheap hydrolysis method for reversible lithium-ion batteries. J Alloys Compd 527:132–136. 10.1016/j.jallcom.2012.02.108 DOI: 10.1016/j.jallcom.2012.02.108
Wang X, Yao C, Wang F, Li Z (2017) Cellulose-based nanomaterials for energy applications. Small 13:1–19. 10.1002/smll.201702240 DOI: 10.1002/smll.201702240
Wang L, Zuo X, Raut A et al (2019) Operation of proton exchange membrane (PEM) fuel cells using natural cellulose fiber membranes. Sustain Energy Fuels 3:2725–2732. 10.1039/c9se00381a DOI: 10.1039/c9se00381a
Xia J, Lei X, Lu Y et al (2020) Coagulation mechanism of cellulose/metal nanohybrids through a simple one-step process and their interaction with Cr(VI). Int J Biol Macromol 142:404–411. 10.1016/j.ijbiomac.2019.09.112 DOI: 10.1016/j.ijbiomac.2019.09.112
Xiao H, Li J, He B (2017) Anatase-titania templated by nanofibrillated cellulose and photocatalytic degradation for methyl orange. J Inorg Organomet Polym Mater 27:1022–1027. 10.1007/s10904-017-0550-8 DOI: 10.1007/s10904-017-0550-8
Zhang N, Tao P, Lu Y, Nie S (2019) Effect of lignin on the thermal stability of cellulose nanofibrils produced from bagasse pulp. Cellulose 26:7823–7835. 10.1007/s10570-019-02657-w DOI: 10.1007/s10570-019-02657-w
Zhao J, Lu C, He X et al (2015) Polyethylenimine-grafted cellulose nanofibril aerogels as versatile vehicles for drug delivery. ACS Appl Mater Interfaces 7:2607–2615. 10.1021/am507601m DOI: 10.1021/am507601m
Zhao F, Repo E, Song Y et al (2017) Polyethylenimine-cross-linked cellulose nanocrystals for highly efficient recovery of rare earth elements from water and a mechanism study. Green Chem 19:4816–4828. 10.1039/c7gc01770g DOI: 10.1039/c7gc01770g