Bayesian inference; Model updating; Modeling errors; Nonlinear normal modes; Nonlinear system identification
Abstract :
[en] This paper presents a Bayesian model updating methodology for dynamical systems with geometric nonlinearities based on their nonlinear normal modes (NNMs) extracted from broadband vibration data. Model parameters are calibrated by minimizing selected metrics between identified and model-predicted NNMs. In the first approach, a deterministic formulation is adopted, and parameters are updated by minimizing a nonlinear least-squares objective function. A probabilistic approach based on Bayesian inference is next investigated, where a Transitional Markov Chain Monte Carlo is implemented to sample the joint posterior probability distribution of the nonlinear model parameters. Bayesian model calibration has the advantage to quantify parameter uncertainty and to provide an estimation of model evidence for model class selection. The two formulations are evaluated when applied to a numerical cantilever beam with geometrical nonlinearity. The NNMs of the beam are derived from simulated broadband data through nonlinear subspace identification and numerical continuation. Accuracy of model updating results is studied with respect to the level of measurement noise, the number of available datasets, and modeling errors.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Song, Mingming; Department of Civil and Environmental Engineering, Tufts University, Medford, MA, United States
Renson, Ludovic; Bristol University
Noël, Jean-Philippe ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Moaveni, Babak; Department of Civil and Environmental Engineering, Tufts University, Medford, MA, United States
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
Bayesian model updating of nonlinear systems using nonlinear normal modes
Zienkiewicz OC, Taylor RL, Taylor RL. The Finite Element Method. London: McGraw-hill; 1977
Mottershead J, Friswell M. Model updating in structural dynamics: a survey. J Sound Vib. 1993;167(2):347-375
Friswell M, Mottershead JE. Finite Element Model Updating In Structural Dynamics. Springer Science & Business Media; 2013
Brownjohn JM, Xia P-Q. Dynamic assessment of curved cable-stayed bridge by model updating. J Struct Eng. 2000;126(2):252-260
Teughels A, De Roeck G. Structural damage identification of the highway bridge Z24 by FE model updating. J Sound Vib. 2004;278(3):589-610
Reynders E, Roeck GD, Gundes Bakir P, Sauvage C. Damage identification on the Tilff bridge by vibration monitoring using optical fiber strain sensors. J Eng Mech. 2007;133(2):185-193
Song M, Yousefianmoghadam S, Mohammadi M-E, Moaveni B, Stavridis A, Wood RL. An application of finite element model updating for damage assessment of a two-story reinforced concrete building and comparison with lidar. Struct Health Monit. 2017;1475921717737970
Asgarieh E, Moaveni B, Stavridis A. Nonlinear finite element model updating of an infilled frame based on identified time-varying modal parameters during an earthquake. J Sound Vib. 2014;333(23):6057-6073
Asgarieh E, Moaveni B, Barbosa AR, Chatzi E. Nonlinear model calibration of a shear wall building using time and frequency data features. Mech Syst Signal Process. 2017;85:236-251
Kyprianou A, Worden K, Panet M. Identification of hysteretic systems using the differential evolution algorithm. J Sound Vib. 2001;248(2):289-314
Schmidt R. Updating non-linear components. Mech Syst Sig Process. 1994;8(6):679-690
Doebling S, Hemez F, Rhee W. Statistical model updating and validation applied to nonlinear transient structural dynamics. Proceedings of the European COST F3 Conference on System Identification & Structural Health Monitoring, Madrid Citeseer, 2000; 409–418
Schultze JF, Hemez FM, Doebling SW, Sohn H. Application of non-linear system model updating using feature extraction and parameter effects analysis. Shock Vib. 2001;8(6):325-337
Hemez FM, Doebling SW. Review and assessment of model updating for non-linear, transient dynamics. Mech Syst Signal Process. 2001;15(1):45-74
Meyer S, Link M. Modelling and updating of local non-linearities using frequency response residuals. Mech Syst Signal Process. 2003;17(1):219-226
Kerschen G, Golinval J-C. Generation of accurate finite element models of nonlinear systems–application to an aeroplane-like structure. Nonlinear Dyn. 2005;39(1-2):129-142
Kurt M, Eriten M, McFarland DM, Bergman LA, Vakakis AF. Methodology for model updating of mechanical components with local nonlinearities. J Sound Vib. 2015;357:331-348
Kurt M, Moore KJ, Eriten M, McFarland DM, Bergman LA, Vakakis AF. Nonlinear model updating applied to the IMAC XXXII Round Robin benchmark system. Mech Syst Signal Process. 2017;88:111-122
Alampalli S. Effects of testing, analysis, damage, and environment on modal parameters. Mech Syst Signal Process. 2000;14(1):63-74
Clinton JF, Bradford SC, Heaton TH, Favela J. The observed wander of the natural frequencies in a structure. Bull Seismol Soc Am. 2006;96(1):237-257
Sohn H. A Bayesian probabilistic approach for structure damage detection. 1997
Beck JL, Katafygiotis LS. Updating models and their uncertainties. I: Bayesian statistical framework. J Eng Mech. 1998;124(4):455-461
Beck JL, Au SK, Vanik MW. Monitoring structural health using a probabilistic measure. Comput Aided Civ Inf Eng. 2001;16:1-11
Beck JL, Au S-K. Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation. J Eng Mech. 2002;128(4):380-391
Beck JL. Bayesian system identification based on probability logic. Struct Control Health Monit. 2010;17(7):825-847
Ching J, Beck JL. New Bayesian model updating algorithm applied to a structural health monitoring benchmark. Struct Health Monit. 2004;3(4):313-332
Yuen KV, Beck JL, Au SK. Structural damage detection and assessment by adaptive Markov chain Monte Carlo simulation. Struct Control Health Monit. 2004;11(4):327-347
Muto M, Beck JL. Bayesian updating and model class selection for hysteretic structural models using stochastic simulation. J Vib Control. 2008;14(1-2):7-34
Ntotsios E, Papadimitriou C, Panetsos P, Karaiskos G, Perros K, Perdikaris PC. Bridge health monitoring system based on vibration measurements. Bull Earthq Eng. 2009;7(2):469-483
Behmanesh I, Moaveni B, Papadimitriou C. Probabilistic damage identification of a designed 9-story building using modal data in the presence of modeling errors. Eng Struct. 2017;131:542-552
Behmanesh I, Moaveni B, Lombaert G, Papadimitriou C. Hierarchical Bayesian model updating for structural identification. Mech Syst Signal Process. 2015;64:360-376
Rosenberg R. The normal modes of nonlinear n-degree-of-freedom systems. J Appl Mech. 1962;29(1):7-14
Rosenberg R. On nonlinear vibrations of systems with many degrees of freedom. Adv Appl Mech. 1966;9:155-242
Lee YS, Kerschen G, Vakakis AF, Panagopoulos P, Bergman L, McFarland DM. Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D: Nonlinear Phenomena. 2005;204(1-2):41-69
Shaw SW, Pierre C. Normal modes for non-linear vibratory systems. J Sound Vib. 1993;164(1):85-124
Vakakis AF, Manevitch LI, Mikhlin YV, Pilipchuk VN, Zevin AA. Normal modes and localization in nonlinear systems. New York: Springer; 2001
Vakakis AF. Non-linear normal modes (NNMs) and their applications in vibration theory: an overview. Mech Syst Signal Process. 1997;11(1):3-22
Kuether RJ, Renson L, Detroux T, Grappasonni C, Kerschen G, Allen MS. Nonlinear normal modes, modal interactions and isolated resonance curves. J Sound Vib. 2015;351:299-310
Renson L, Noël J-P, Kerschen G. Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes. Nonlinear Dyn. 2015;79(2):1293-1309
Peter S, Grundler A, Reuss P, Gaul L, Leine RI. Towards finite element model updating based on nonlinear normal modes. Nonlinear Dyn. 2016;1. Springer:209-217
Hill T, Green P, Cammarano A, Neild S. Fast Bayesian identification of a class of elastic weakly nonlinear systems using backbone curves. J Sound Vib. 2016;360:156-170
Peeters M, Kerschen G, Golinval J-C. Modal testing of nonlinear vibrating structures based on nonlinear normal modes: experimental demonstration. Mech Syst Signal Process. 2011;25(4):1227-1247
Renson L, Gonzalez-Buelga A, Barton D, Neild S. Robust identification of backbone curves using control-based continuation. J Sound Vib. 2016;367:145-158
Peter S, Leine RI. Excitation power quantities in phase resonance testing of nonlinear systems with phase-locked-loop excitation. Mech Syst Signal Process. 2017;96:139-158
Noël J-P, Renson L, Grappasonni C, Kerschen G. Identification of nonlinear normal modes of engineering structures under broadband forcing. Mech Syst Signal Process. 2016;74:95-110
Peeters M, Viguié R, Sérandour G, Kerschen G, Golinval J-C. Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech Syst Signal Process. 2009;23(1):195-216
Jaynes ET. Information theory and statistical mechanics. Phys Rev. 1957;106(4):620-630
Jaynes ET. Information theory and statistical mechanics. II. Phys Rev. 1957;108(2):171-190
Renson L, Kerschen G, Cochelin B. Numerical computation of nonlinear normal modes in mechanical engineering. J Sound Vib. 2016;364:177-206
Simoen E, Moaveni B, Conte JP, Lombaert G. Uncertainty quantification in the assessment of progressive damage in a 7-story full-scale building slice. J Eng Mech. 2013;139(12):1818-1830
Grappasonni C, Noël J-P, Kerschen G. Subspace and nonlinear-normal-modes-based identification of a beam with softening-hardening behaviour. Nonlinear Dyn. 2014;2. Springer:55-68
Thouverez F. Presentation of the ECL benchmark. Mech Syst Signal Process. 2003;17(1):195-202
MATLAB R2014a. In: MathWorks, (ed.). 2014
Byrd RH, Hribar ME, Nocedal J. An interior point algorithm for large-scale nonlinear programming. SIAM J Optim. 1999;9(4):877-900
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21(6):1087-1092
Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970;57(1):97-109
Roberts GO, Rosenthal JS. Optimal scaling for various Metropolis-Hastings algorithms. Stat Sci. 2001;16(4):351-367
Ching J, Chen Y-C. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging. J Eng Mech. 2007;133(7):816-832
Betz W, Papaioannou I, Straub D. Transitional markov chain Monte Carlo: observations and improvements. J Eng Mech. 2016;142(5):04016016
Wu S, Angelikopoulos P, Papadimitriou C, Koumoutsakos P. Bayesian annealed sequential importance sampling: an unbiased version of transitional Markov chain Monte Carlo. ASCE-ASME J Risk Uncertain Eng Syst, Part B: Mech Eng. 2018;4:011008