Article (Scientific journals)
Bisplit graphs satisfy the Chen-Chvátal conjecture
Beaudou, Laurent; Kahn, Giacomo; Rosenfeld, Matthieu
2019In Discrete Mathematics and Theoretical Computer Science, 21 (1), p. 5509
Peer Reviewed verified by ORBi
 

Files


Full Text
Beaudou_Bisplit-graphs_2020.pdf
Publisher postprint (175.45 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Bisplit graphs; Chen-Chvátal conjecture; Distances; Complete bipartite graphs; Metric spaces; Stable sets; Universal lines; Vertex set; Graph theory
Abstract :
[en] In this paper, we give a lengthy proof of a small result! A graph is bisplit if its vertex set can be partitioned into three stable sets with two of them inducing a complete bipartite graph. We prove that these graphs satisfy the Chen-Chv atal conjecture: their metric space (in the usual sense) has a universal line (in an unusual sense) or at least as many lines as the number of vertices. © 2019 by the author(s).
Disciplines :
Mathematics
Author, co-author :
Beaudou, Laurent;  Higher School of Economics, Moscow, Russian Federation
Kahn, Giacomo;  Université D'Orléans, France
Rosenfeld, Matthieu ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Bisplit graphs satisfy the Chen-Chvátal conjecture
Publication date :
2019
Journal title :
Discrete Mathematics and Theoretical Computer Science
ISSN :
1365-8050
eISSN :
1462-7264
Publisher :
Maison de l'informatique et des mathematiques discretes, France
Volume :
21
Issue :
1
Pages :
5509
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
ANR-15-CE40-0009: 2015-2018
Funders :
AAP - Association of Academic Physiatrists
FEDER - Federación Española de Enfermedades Raras
Available on ORBi :
since 27 June 2020

Statistics


Number of views
48 (2 by ULiège)
Number of downloads
2 (2 by ULiège)

Scopus citations®
 
6
Scopus citations®
without self-citations
6

Bibliography


Similar publications



Contact ORBi