Available on ORBi since
26 June 2020
Article (Scientific journals)
A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
Wu, Ling  ; Nguyen, Van Dung  ; Kilingar, Nanda Gopala  et al.
2020 • In Computer Methods in Applied Mechanics and Engineering, 369, p. 113234
Peer Reviewed verified by ORBi
 

Files


Full Text
2020_CMAME_RNN.pdf
Author postprint (7.34 MB)

NOTICE: this is the author’s version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering 369 (2020) 113234, DOI: 10.1016/j.cma.2020.113234


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Artificial Neural Network; Recurrent Neural Netwrok; Surrogate; Multi-scale; Elasto-plasticity; Data-driven
Abstract :
[en] An artificial Neural Network (NNW) is designed to serve as a surrogate model of micro-scale simulations in the context of multi-scale analyzes in solid mechanics. The design and training methodologies of the NNW are developed in order to allow accounting for history-dependent material behaviors. On the one hand, a Recurrent Neural Network (RNN) using a Gated Recurrent Unit (GRU) is constructed, which allows mimicking the internal variables required to account for history-dependent behaviors since the RNN is self-equipped with hidden variables that have the ability of tracking loading history. On the other hand, in order to achieve accuracy under multi-dimensional non-proportional loading conditions, training of the RNN is achieved using sequential data. In particular the sequential training data are collected from finite element simulations on an elasto-plastic composite RVE subjected to random loading paths. The random loading paths are generated in a way similar to a random walking in stochastic process and allows generating data for a wide range of strain-stress states and state evolution. The accuracy and efficiency of the RNN-based surrogate model is tested on the structural analysis of an open-hole sample subjected to several loading/unloading cycles. It is shown that a similar accuracy as with a FE2 multi-scale simulation can be reached with the RNN-based surrogate model as long as the local strain state remains in the training range, while the computational time is reduced by four orders of magnitude.
Research center :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Wu, Ling ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Nguyen, Van Dung  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Kilingar, Nanda Gopala ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
Publication date :
01 September 2020
Journal title :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
eISSN :
1879-2138
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
369
Pages :
113234
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Name of the research project :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015 for the project Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM) of the H2020-EU.1.2.1. - FET Open Programme
Funders :
CE - Commission Européenne
F.R.S.-FNRS - Fonds de la Recherche Scientifique
CÉCI - Consortium des Équipements de Calcul Intensif
Commentary :
Data can be downloaded on https://gitlab.uliege.be/moammm/moammmpublic/tree/master/publicationsData/2020_CMAME_RNN or https://doi.org/10.5281/zenodo.3902663

Statistics


Number of views
490 (104 by ULiège)
Number of downloads
655 (22 by ULiège)

Scopus citations®
 
37
Scopus citations®
without self-citations
33
OpenCitations
 
34

Bibliography


Similar publications



Contact ORBi