A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
Wu, Ling; Nguyen, Van Dung; Kilingar, Nanda Gopalaet al.
2020 • In Computer Methods in Applied Mechanics and Engineering, 369, p. 113234
[en] An artificial Neural Network (NNW) is designed to serve as a surrogate model of micro-scale simulations in the context of multi-scale analyzes in solid mechanics.
The design and training methodologies of the NNW are developed in order to allow accounting for history-dependent material behaviors.
On the one hand, a Recurrent Neural Network (RNN) using a Gated Recurrent Unit (GRU) is constructed, which allows mimicking the internal variables required to account for history-dependent behaviors since the RNN is self-equipped with hidden variables that have the ability of tracking loading history.
On the other hand, in order to achieve accuracy under multi-dimensional non-proportional loading conditions, training of the RNN is achieved using sequential data.
In particular the sequential training data are collected from finite element simulations on an elasto-plastic composite RVE subjected to random loading paths.
The random loading paths are generated in a way similar to a random walking in stochastic process and allows generating data for a wide range of strain-stress states and state evolution.
The accuracy and efficiency of the RNN-based surrogate model is tested on the structural analysis of an open-hole sample subjected to several loading/unloading cycles.
It is shown that a similar accuracy as with a FE2 multi-scale simulation can be reached with the RNN-based surrogate model as long as the local strain state remains in the training range, while the computational time is reduced by four orders of magnitude.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Wu, Ling ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Nguyen, Van Dung ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Kilingar, Nanda Gopala ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
Publication date :
01 September 2020
Journal title :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
eISSN :
1879-2138
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
369
Pages :
113234
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Name of the research project :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015 for the project Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM) of the H2020-EU.1.2.1. - FET Open Programme
Funders :
EC - European Commission F.R.S.-FNRS - Fonds de la Recherche Scientifique European Union
Commentary :
Data can be downloaded on https://gitlab.uliege.be/moammm/moammmPublic/publicationsData/2020_CMAME_RNN or https://doi.org/10.5281/zenodo.3902663
Kanouté, P., Boso, D., Chaboche, J., Schrefler, B., Multiscale methods for composites: A review. Arch. Comput. Methods Eng. 1134-3060, 16, 2009, 31–75, 10.1007/s11831-008-9028-8.
Noels, L., Wu, L., Adam, L., Seyfarth, J., Soni, G., Segurado, J., Laschet, G., Chen, G., Lesueur, M., Lobos, M., Böhlke, T., Reiter, T., Oberpeilsteiner, S., Salaberger, D., Weichert, D., Broeckmann, C., Effective properties. Handbook of Software Solutions for ICME, 2016, Wiley-VCH Verlag GmbH & Co. KGaA 9783527693566, 433–485, 10.1002/9783527693566.ch6.
Yvonnet, J., Solid mechanics and its applications. Computational Homogenization of Heterogeneous Materials with Finite Elements, 2019, Springer International Publishing 978-3-030-18382-0.
Özdemir, I., Brekelmans, W.A.M., Geers, M.G.D., Computational homogenization for heat conduction in heterogeneous solids. Internat. J. Numer. Methods Engrg. 1097-0207, 73(2), 2008, 185–204, 10.1002/nme.2068.
Schröder, J., Keip, M.-A., A framework for the two-scale homogenization of electro-mechanically coupled boundary value problems. Kuczma, M., Wilmanski, K., (eds.) Computer Methods in Mechanics Advanced Structured Materials, vol. 1, 2010, Springer Berlin Heidelberg 978-3-642-05240-8, 311–329.
Miehe, C., Vallicotti, D., Teichtmeister, S., Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. GAMM-Mitt. 1522-2608, 38(2), 2015, 313–343, 10.1002/gamm.201510017.
Miehe, C., Schotte, J., Schröder, J., Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16:1–4 (1999), 372–382 cited By 88.
Terada, K., Hori, M., Kyoya, T., Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 0020-7683, 37(16), 2000, 2285–2311, 10.1016/S0020-7683(98)00341-2 URL http://www.sciencedirect.com/science/article/pii/S0020768398003412.
Kouznetsova, V., Brekelmans, W., Baaijens, F., An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27:1 (2001), 37–48.
Yvonnet, J., He, Q.-C., The reduced model multiscale method (r3m) for the non-linear homogenization of hyperelastic media at finite strains. J. Comput. Phys. 0021-9991, 223(1), 2007, 341–368, 10.1016/j.jcp.2006.09.019 URL http://www.sciencedirect.com/science/article/pii/S0021999106004402.
Hernández, J., Oliver, J., Huespe, A., Caicedo, M., Cante, J., High-performance model reduction techniques in computational multiscale homogenization. Comput. Methods Appl. Mech. Engrg. 0045-7825, 276, 2014, 149–189, 10.1016/j.cma.2014.03.011 URL http://www.sciencedirect.com/science/article/pii/S0045782514000978.
Soldner, D., Brands, B., Zabihyan, R., Steinmann, P., Mergheim, J., A numerical study of different projection-based model reduction techniques applied to computational homogenisation. Comput. Mech. 60:4 (2017), 613–625.
Wirtz, D., Karajan, N., Haasdonk, B., Surrogate modeling of multiscale models using kernel methods. Internat. J. Numer. Methods Engrg. 1097-0207, 101(1), 2015, 1–28, 10.1002/nme.4767.
Rocha, I., Kerfriden, P., van der Meer, F.P., Micromechanics-based surrogate models for the response of composites: A critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks. Eur. J. Mech. A Solids 0997-7538, 82, 2020, 103995, 10.1016/j.euromechsol.2020.103995.
Furukawa, T., Yagawa, G., Implicit constitutive modelling for viscoplasticity using neural networks. Internat. J. Numer. Methods Engrg. 43:2 (1998), 195–219.
Furukawa, T., Hoffman, M., Accurate cyclic plastic analysis using a neural network material model. Eng. Anal. Bound. Elem. 0955-7997, 28(3), 2004, 195–204, 10.1016/S0955-7997(03)00050-X URL http://www.sciencedirect.com/science/article/pii/S095579970300050X, Inverse Problems.
Wang, K., Sun, W., Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. Comput. Methods Appl. Mech. Engrg. 0045-7825, 346, 2019, 216–241, 10.1016/j.cma.2018.11.026 URL http://www.sciencedirect.com/science/article/pii/S0045782518305851.
Fernández, M., Rezaei, S., Mianroodi, J.R., Fritzen, F., Reese, S., Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Adv. Model. Simul. Eng. Sci. 7:1 (2020), 1–27.
Lefik, M., Schrefler, B., Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput. Methods Appl. Mech. Engrg. 0045-7825, 192(28), 2003, 3265–3283, 10.1016/S0045-7825(03)00350-5 URL http://www.sciencedirect.com/science/article/pii/S0045782503003505, Multiscale Computational Mechanics for Materials and Structures.
Hashash, Y.M.A., Jung, S., Ghaboussi, J., Numerical implementation of a neural network based material model in finite element analysis. Internat. J. Numer. Methods Engrg. 59:7 (2004), 989–1005, 10.1002/nme.905 URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.905.
Zhang, A., Mohr, D., Using neural networks to represent von mises plasticity with isotropic hardening. Int. J. Plast. 0749-6419, 2020, 102732, 10.1016/j.ijplas.2020.102732.
Lefik, M., Schrefler, B., Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading. Comput. Struct. 0045-7949, 80(22), 2002, 1699–1713, 10.1016/S0045-7949(02)00162-1 URL http://www.sciencedirect.com/science/article/pii/S0045794902001621.
Wu, L., Zulueta, K., Major, Z., Arriaga, A., Noels, L., Bayesian inference of non-linear multiscale model parameters accelerated by a deep neural network. Comput. Methods Appl. Mech. Engrg. 0045-7825, 360, 2020, 112693, 10.1016/j.cma.2019.112693 URL http://www.sciencedirect.com/science/article/pii/S004578251930578X.
Hambli, R., Katerchi, H., Benhamou, C.-L., Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model. Mechanobiol. 10:1 (2011), 133–145.
Le, B.A., Yvonnet, J., He, Q.C., Computational homogenization of nonlinear elastic materials using neural networks. Internat. J. Numer. Methods Engrg. 104:12 (2015), 1061–1084, 10.1002/nme.4953.
Bessa, M., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., Liu, W., A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput. Methods Appl. Mech. Engrg. 0045-7825, 320, 2017, 633–667, 10.1016/j.cma.2017.03.037 URL http://www.sciencedirect.com/science/article/pii/S0045782516314803.
Fritzen, F., Fernández, M., Larsson, F., On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Front. Mater. 2296-8016, 6, 2019, 75, 10.3389/fmats.2019.00075 URL https://www.frontiersin.org/article/10.3389/fmats.2019.00075.
Unger, J.F., Könke, C., Coupling of scales in a multiscale simulation using neural networks. Comput. Struct. 0045-7949, 86(21), 2008, 1994–2003, 10.1016/j.compstruc.2008.05.004 URL http://www.sciencedirect.com/science/article/pii/S0045794908001430.
Settgast, C., Htter, G., Kuna, M., Abendroth, M., A hybrid approach to simulate the homogenized irreversible elastic–plastic deformations and damage of foams by neural networks. Int. J. Plast. 0749-6419, 126, 2020, 102624, 10.1016/j.ijplas.2019.11.003 URL http://www.sciencedirect.com/science/article/pii/S074964191930381X.
Ghavamian, F., Simone, A., Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. Comput. Methods Appl. Mech. Engrg. 0045-7825, 357, 2019, 112594, 10.1016/j.cma.2019.112594 URL http://www.sciencedirect.com/science/article/pii/S0045782519304700.
Koeppe, A., Bamer, F., Markert, B., An intelligent nonlinear meta element for elastoplastic continua: deep learning using a new time-distributed residual u-net architecture. Comput. Methods Appl. Mech. Engrg. 0045-7825, 366, 2020, 113088, 10.1016/j.cma.2020.113088.
Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A., Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 0027-8424, 116(52), 2019, 26414–26420, 10.1073/pnas.1911815116.
Gorji, M.B., Mozaffar, M., Heidenreich, J.N., Cao, J., Mohr, D., On the potential of recurrent neural networks for modeling path dependent plasticity. J. Mech. Phys. Solids 0022-5096, 143, 2020, 103972, 10.1016/j.jmps.2020.103972.
Nguyen, V.-D., Wu, L., Noels, L., Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method. Comput. Mech. 1432-0924, 59(3), 2017, 483–505, 10.1007/s00466-016-1358-z.
Peric, D., de Souza Neto, E.A., Feijóo, R.A., Partovi, M., Molina, A.J.C., On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Internat. J. Numer. Methods Engrg. 1097-0207, 87, 2010, 149–170 URL http://dx.doi.org/10.1002/nme.3014.
Schröder, J., Labusch, M., Keip, M.-A., Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: Localization and homogenization. Comput. Methods Appl. Mech. Engrg. 0045-7825, 32, 2016, 253–280, 10.1016/j.cma.2015.10.005 URL http://www.sciencedirect.com/science/article/pii/S0045782515003242.
Nguyen, V.-D., Béchet, E., Geuzaine, C., Noels, L., Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput. Mater. Sci. 0927-0256, 55, 2012, 390–406, 10.1016/j.commatsci.2011.10.017 URL http://www.sciencedirect.com/science/article/pii/S0927025611005866.
Ainsworth, M., Essential boundary conditions and multi-point constraints in finite element analysis. Comput. Methods Appl. Mech. Engrg. 0045-7825, 190(48), 2001, 6323–6339, 10.1016/S0045-7825(01)00236-5.
URL https://pytorch.org/ (accessed: 30-04-2020).
Cuitino, A., Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng. Comput., 9, 1992, 437.
Wu, L., Nguyen, V.D., Kilingar, N.G., Noels, L., Data of A Recurrent Neural Network-Accelerated Multi-Scale Model for Elasto-Plastic Heterogeneous Materials Subjected to Random Cyclic and Non- Proportional Loading Paths. 2020, Zenodo, 10.5281/zenodo.3902663.