A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
Wu, Ling; Nguyen, Van Dung; Kilingar, Nanda Gopalaet al.
2020 • In Computer Methods in Applied Mechanics and Engineering, 369, p. 113234
NOTICE: this is the author’s version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering 369 (2020) 113234, DOI: 10.1016/j.cma.2020.113234
All documents in ORBi are protected by a user license.
[en] An artificial Neural Network (NNW) is designed to serve as a surrogate model of micro-scale simulations in the context of multi-scale analyzes in solid mechanics.
The design and training methodologies of the NNW are developed in order to allow accounting for history-dependent material behaviors.
On the one hand, a Recurrent Neural Network (RNN) using a Gated Recurrent Unit (GRU) is constructed, which allows mimicking the internal variables required to account for history-dependent behaviors since the RNN is self-equipped with hidden variables that have the ability of tracking loading history.
On the other hand, in order to achieve accuracy under multi-dimensional non-proportional loading conditions, training of the RNN is achieved using sequential data.
In particular the sequential training data are collected from finite element simulations on an elasto-plastic composite RVE subjected to random loading paths.
The random loading paths are generated in a way similar to a random walking in stochastic process and allows generating data for a wide range of strain-stress states and state evolution.
The accuracy and efficiency of the RNN-based surrogate model is tested on the structural analysis of an open-hole sample subjected to several loading/unloading cycles.
It is shown that a similar accuracy as with a FE2 multi-scale simulation can be reached with the RNN-based surrogate model as long as the local strain state remains in the training range, while the computational time is reduced by four orders of magnitude.
Research Center/Unit :
A&M - Aérospatiale et Mécanique - ULiège
Disciplines :
Mechanical engineering Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Wu, Ling ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Nguyen, Van Dung ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Kilingar, Nanda Gopala ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Noels, Ludovic ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths
Publication date :
01 September 2020
Journal title :
Computer Methods in Applied Mechanics and Engineering
ISSN :
0045-7825
eISSN :
1879-2138
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
369
Pages :
113234
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
H2020 - 862015 - MOAMMM - Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials
Name of the research project :
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862015 for the project Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM) of the H2020-EU.1.2.1. - FET Open Programme
Funders :
EC - European Commission F.R.S.-FNRS - Fonds de la Recherche Scientifique
Commentary :
Data can be downloaded on https://gitlab.uliege.be/moammm/moammmpublic/tree/master/publicationsData/2020_CMAME_RNN or https://doi.org/10.5281/zenodo.3902663
Kanouté, P., Boso, D., Chaboche, J., Schrefler, B., Multiscale methods for composites: A review. Arch. Comput. Methods Eng. 1134-3060, 16, 2009, 31–75, 10.1007/s11831-008-9028-8.
Noels, L., Wu, L., Adam, L., Seyfarth, J., Soni, G., Segurado, J., Laschet, G., Chen, G., Lesueur, M., Lobos, M., Böhlke, T., Reiter, T., Oberpeilsteiner, S., Salaberger, D., Weichert, D., Broeckmann, C., Effective properties. Handbook of Software Solutions for ICME, 2016, Wiley-VCH Verlag GmbH & Co. KGaA 9783527693566, 433–485, 10.1002/9783527693566.ch6.
Yvonnet, J., Solid mechanics and its applications. Computational Homogenization of Heterogeneous Materials with Finite Elements, 2019, Springer International Publishing 978-3-030-18382-0.
Özdemir, I., Brekelmans, W.A.M., Geers, M.G.D., Computational homogenization for heat conduction in heterogeneous solids. Internat. J. Numer. Methods Engrg. 1097-0207, 73(2), 2008, 185–204, 10.1002/nme.2068.
Schröder, J., Keip, M.-A., A framework for the two-scale homogenization of electro-mechanically coupled boundary value problems. Kuczma, M., Wilmanski, K., (eds.) Computer Methods in Mechanics Advanced Structured Materials, vol. 1, 2010, Springer Berlin Heidelberg 978-3-642-05240-8, 311–329.
Miehe, C., Vallicotti, D., Teichtmeister, S., Homogenization and multiscale stability analysis in finite magneto-electro-elasticity. GAMM-Mitt. 1522-2608, 38(2), 2015, 313–343, 10.1002/gamm.201510017.
Miehe, C., Schotte, J., Schröder, J., Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16:1–4 (1999), 372–382 cited By 88.
Terada, K., Hori, M., Kyoya, T., Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 0020-7683, 37(16), 2000, 2285–2311, 10.1016/S0020-7683(98)00341-2 URL http://www.sciencedirect.com/science/article/pii/S0020768398003412.
Kouznetsova, V., Brekelmans, W., Baaijens, F., An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27:1 (2001), 37–48.
Yvonnet, J., He, Q.-C., The reduced model multiscale method (r3m) for the non-linear homogenization of hyperelastic media at finite strains. J. Comput. Phys. 0021-9991, 223(1), 2007, 341–368, 10.1016/j.jcp.2006.09.019 URL http://www.sciencedirect.com/science/article/pii/S0021999106004402.
Hernández, J., Oliver, J., Huespe, A., Caicedo, M., Cante, J., High-performance model reduction techniques in computational multiscale homogenization. Comput. Methods Appl. Mech. Engrg. 0045-7825, 276, 2014, 149–189, 10.1016/j.cma.2014.03.011 URL http://www.sciencedirect.com/science/article/pii/S0045782514000978.
Soldner, D., Brands, B., Zabihyan, R., Steinmann, P., Mergheim, J., A numerical study of different projection-based model reduction techniques applied to computational homogenisation. Comput. Mech. 60:4 (2017), 613–625.
Wirtz, D., Karajan, N., Haasdonk, B., Surrogate modeling of multiscale models using kernel methods. Internat. J. Numer. Methods Engrg. 1097-0207, 101(1), 2015, 1–28, 10.1002/nme.4767.
Rocha, I., Kerfriden, P., van der Meer, F.P., Micromechanics-based surrogate models for the response of composites: A critical comparison between a classical mesoscale constitutive model, hyper-reduction and neural networks. Eur. J. Mech. A Solids 0997-7538, 82, 2020, 103995, 10.1016/j.euromechsol.2020.103995.
Furukawa, T., Yagawa, G., Implicit constitutive modelling for viscoplasticity using neural networks. Internat. J. Numer. Methods Engrg. 43:2 (1998), 195–219.
Furukawa, T., Hoffman, M., Accurate cyclic plastic analysis using a neural network material model. Eng. Anal. Bound. Elem. 0955-7997, 28(3), 2004, 195–204, 10.1016/S0955-7997(03)00050-X URL http://www.sciencedirect.com/science/article/pii/S095579970300050X, Inverse Problems.
Wang, K., Sun, W., Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. Comput. Methods Appl. Mech. Engrg. 0045-7825, 346, 2019, 216–241, 10.1016/j.cma.2018.11.026 URL http://www.sciencedirect.com/science/article/pii/S0045782518305851.
Fernández, M., Rezaei, S., Mianroodi, J.R., Fritzen, F., Reese, S., Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior. Adv. Model. Simul. Eng. Sci. 7:1 (2020), 1–27.
Lefik, M., Schrefler, B., Artificial neural network as an incremental non-linear constitutive model for a finite element code. Comput. Methods Appl. Mech. Engrg. 0045-7825, 192(28), 2003, 3265–3283, 10.1016/S0045-7825(03)00350-5 URL http://www.sciencedirect.com/science/article/pii/S0045782503003505, Multiscale Computational Mechanics for Materials and Structures.
Hashash, Y.M.A., Jung, S., Ghaboussi, J., Numerical implementation of a neural network based material model in finite element analysis. Internat. J. Numer. Methods Engrg. 59:7 (2004), 989–1005, 10.1002/nme.905 URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.905.
Zhang, A., Mohr, D., Using neural networks to represent von mises plasticity with isotropic hardening. Int. J. Plast. 0749-6419, 2020, 102732, 10.1016/j.ijplas.2020.102732.
Lefik, M., Schrefler, B., Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading. Comput. Struct. 0045-7949, 80(22), 2002, 1699–1713, 10.1016/S0045-7949(02)00162-1 URL http://www.sciencedirect.com/science/article/pii/S0045794902001621.
Wu, L., Zulueta, K., Major, Z., Arriaga, A., Noels, L., Bayesian inference of non-linear multiscale model parameters accelerated by a deep neural network. Comput. Methods Appl. Mech. Engrg. 0045-7825, 360, 2020, 112693, 10.1016/j.cma.2019.112693 URL http://www.sciencedirect.com/science/article/pii/S004578251930578X.
Hambli, R., Katerchi, H., Benhamou, C.-L., Multiscale methodology for bone remodelling simulation using coupled finite element and neural network computation. Biomech. Model. Mechanobiol. 10:1 (2011), 133–145.
Le, B.A., Yvonnet, J., He, Q.C., Computational homogenization of nonlinear elastic materials using neural networks. Internat. J. Numer. Methods Engrg. 104:12 (2015), 1061–1084, 10.1002/nme.4953.
Bessa, M., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., Liu, W., A framework for data-driven analysis of materials under uncertainty: countering the curse of dimensionality. Comput. Methods Appl. Mech. Engrg. 0045-7825, 320, 2017, 633–667, 10.1016/j.cma.2017.03.037 URL http://www.sciencedirect.com/science/article/pii/S0045782516314803.
Fritzen, F., Fernández, M., Larsson, F., On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Front. Mater. 2296-8016, 6, 2019, 75, 10.3389/fmats.2019.00075 URL https://www.frontiersin.org/article/10.3389/fmats.2019.00075.
Unger, J.F., Könke, C., Coupling of scales in a multiscale simulation using neural networks. Comput. Struct. 0045-7949, 86(21), 2008, 1994–2003, 10.1016/j.compstruc.2008.05.004 URL http://www.sciencedirect.com/science/article/pii/S0045794908001430.
Settgast, C., Htter, G., Kuna, M., Abendroth, M., A hybrid approach to simulate the homogenized irreversible elastic–plastic deformations and damage of foams by neural networks. Int. J. Plast. 0749-6419, 126, 2020, 102624, 10.1016/j.ijplas.2019.11.003 URL http://www.sciencedirect.com/science/article/pii/S074964191930381X.
Ghavamian, F., Simone, A., Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. Comput. Methods Appl. Mech. Engrg. 0045-7825, 357, 2019, 112594, 10.1016/j.cma.2019.112594 URL http://www.sciencedirect.com/science/article/pii/S0045782519304700.
Koeppe, A., Bamer, F., Markert, B., An intelligent nonlinear meta element for elastoplastic continua: deep learning using a new time-distributed residual u-net architecture. Comput. Methods Appl. Mech. Engrg. 0045-7825, 366, 2020, 113088, 10.1016/j.cma.2020.113088.
Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A., Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 0027-8424, 116(52), 2019, 26414–26420, 10.1073/pnas.1911815116.
Gorji, M.B., Mozaffar, M., Heidenreich, J.N., Cao, J., Mohr, D., On the potential of recurrent neural networks for modeling path dependent plasticity. J. Mech. Phys. Solids 0022-5096, 143, 2020, 103972, 10.1016/j.jmps.2020.103972.
Nguyen, V.-D., Wu, L., Noels, L., Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method. Comput. Mech. 1432-0924, 59(3), 2017, 483–505, 10.1007/s00466-016-1358-z.
Peric, D., de Souza Neto, E.A., Feijóo, R.A., Partovi, M., Molina, A.J.C., On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Internat. J. Numer. Methods Engrg. 1097-0207, 87, 2010, 149–170 URL http://dx.doi.org/10.1002/nme.3014.
Schröder, J., Labusch, M., Keip, M.-A., Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: Localization and homogenization. Comput. Methods Appl. Mech. Engrg. 0045-7825, 32, 2016, 253–280, 10.1016/j.cma.2015.10.005 URL http://www.sciencedirect.com/science/article/pii/S0045782515003242.
Nguyen, V.-D., Béchet, E., Geuzaine, C., Noels, L., Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation. Comput. Mater. Sci. 0927-0256, 55, 2012, 390–406, 10.1016/j.commatsci.2011.10.017 URL http://www.sciencedirect.com/science/article/pii/S0927025611005866.
Ainsworth, M., Essential boundary conditions and multi-point constraints in finite element analysis. Comput. Methods Appl. Mech. Engrg. 0045-7825, 190(48), 2001, 6323–6339, 10.1016/S0045-7825(01)00236-5.
URL https://pytorch.org/ (accessed: 30-04-2020).
Cuitino, A., Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics. Eng. Comput., 9, 1992, 437.
Wu, L., Nguyen, V.D., Kilingar, N.G., Noels, L., Data of A Recurrent Neural Network-Accelerated Multi-Scale Model for Elasto-Plastic Heterogeneous Materials Subjected to Random Cyclic and Non- Proportional Loading Paths. 2020, Zenodo, 10.5281/zenodo.3902663.