Mitigating flicker noise in high-precision photometry. I. Characterization of the noise structure, impact on the inferred transit parameters, and predictions for CHEOPS observations
planetary systems; stars: activity; Sun: granulation; methods: statistical; Astrophysics - Earth and Planetary Astrophysics; Astrophysics - Solar and Stellar Astrophysics
Abstract :
[en] Context. In photometry, the short-timescale stellar variability ("flicker"), such as that caused by granulation and solar-like oscillations, can reach amplitudes comparable to the transit depth of Earth-sized planets and is correlated over the typical transit timescales. It can introduce systematic errors on the inferred planetary parameters when a small number of transits are observed. <BR /> Aims: The objective of this paper is to characterize the statistical properties of the flicker noise and quantify its impact on the inferred transit parameters. <BR /> Methods: We used the extensive solar observations obtained with SoHO/VIRGO to characterize flicker noise. We simulated realistic transits across the solar disk using SDO/HMI data and used these to obtain transit light curves, which we used to estimate the errors made on the transit parameters due to the presence of real solar noise. We make these light curves publicly available. To extend the study to a wider parameter range, we derived the properties of flicker noise using Kepler observations and studied their dependence on stellar parameters. Finally, we predicted the limiting stellar apparent magnitude for which the properties of the flicker noise can be extracted using high-precision CHEOPS and PLATO observations. <BR /> Results: Stellar granulation is a stochastic colored noise, and is stationary with respect to the stellar magnetic cycle. Both the flicker correlation timescales and amplitudes increase with the stellar mass and radius. If these correlations are not taken into account when fitting for the parameters of transiting exoplanets, this can bias the inferred parameters. In particular, we find errors of up to 10% on the ratio between the planetary and stellar radius (R[SUB]p[/SUB]/R[SUB]s[/SUB]) for an Earth-sized planet orbiting a Sun-like star. <BR /> Conclusions: Flicker will significantly affect the inferred parameters of transits observed at high precision with CHEOPS and PLATO for F and G stars. Dedicated modeling strategies need to be developed to accurately characterize both the star and the transiting exoplanets.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Sulis, S.
Lendl, M.
Hofmeister, S.
Veronig, A.
Fossati, L.
Cubillos, P.
Van Grootel, Valérie ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Language :
English
Title :
Mitigating flicker noise in high-precision photometry. I. Characterization of the noise structure, impact on the inferred transit parameters, and predictions for CHEOPS observations
Fröhlich, C., Andersen, B. N., Appourchaux, T., et al. 1997, Sol. Phys., 170, 1
García, R. A., Salabert, D., Mathur, S., et al. 2013, J. Phys. Conf. Ser., 440, 012020
Gibson, N. P., Aigrain, S., Roberts, S., et al. 2012, MNRAS, 419, 2683
Giles, H. A. C., Osborn, H. P., Blanco-Cuaresma, S., et al. 2018, A&A, 615, L13
Gilliland, R. L., Chaplin, W. J., Dunham, E. W., et al. 2011, ApJS, 197, 6
Gilliland, R. L., Chaplin, W. J., Jenkins, J. M., Ramsey, L. W., & Smith, J. C. 2015, AJ, 150, 133
Harvey, J. 1985, ESA SP, 235, 256
Harvey, J. W. 1988, IAU Symp., 123, 497
Heinisch, O. 1962, Biometrische Zeitschrift, 4, 207
Jiménez, A., Roca Cortés, T., & Jiménez-Reyes, S. J. 2002, Sol. Phys., 209, 247
Jiménez, A., Jiménez-Reyes, S. J., & García, R. A. 2005, ApJ, 623, 1215
Kallinger, T., De Ridder, J., Hekker, S., et al. 2014, A&A, 570, A41
Kallinger, T., Hekker, S., García, R. A., Huber, D., & Matthews, J. M. 2016, Sci. Adv., 2, e1500654
Karoff, C. 2012, MNRAS, 421, 3170
Kipping, D. M. 2010, MNRAS, 408, 1758
Kipping, D. M., Bastien, F. A., Stassun, K. G., et al. 2014, ApJ, 785, L32
Kjeldsen, H., & Bedding, T. R. 1995, A&A, 293, 87
Lendl, M., Cubillos, P. E., Hagelberg, J., et al. 2017, A&A, 606, A18
Lendl, M., Bouchy, F., Gill, S., et al. 2020, MNRAS, 492, 1761
Li, T. 2014, Time Series with Mixed Spectra (Boca Raton, Florida: CRC Press)
Mandel, K., & Agol, E. 2002, ApJ, 580, L171
Marcos-Arenal, P., Zima, W., De Ridder, J., et al. 2014, A&A, 566, A92
Mathur, S., Hekker, S., Trampedach, R., et al. 2011, ApJ, 741, 119
McQuillan, A., Aigrain, S., & Roberts, S. 2012, A&A, 539, A137
Meunier, N., Lagrange, A. M., Borgniet, S., & Rieutord, M. 2015, A&A, 583, A118
Morris, B. M., Bobra, M. G., Agol, E., Lee, Y. J., & Hawley, S. L. 2020, MNRAS, 493, 5489
Moya, A., Barceló Forteza, S., Bonfanti, A., et al. 2018, A&A, 620, A203
Muller, R., Hanslmeier, A., Utz, D., & Ichimoto, K. 2018, A&A, 616, A87
Nesis, A., Hammer, R., Roth, M., & Schleicher, H. 2002, A&A, 396, 1003
Nordlund, A., Stein, R. F., & Asplund, M. 2009, Liv. Rev. Sol. Phys., 6, 2
Oshagh, M. 2018, Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds (Berlin: Springer), 49, 239
Pallé, P. L., et al. 1999, ASP Conf. Ser., 173, 297
Pande, D., Bedding, T. R., Huber, D., & Kjeldsen, H. 2018, MNRAS, 480, 467
Pereira, F., Campante, T. L., Cunha, M. S., et al. 2019, MNRAS, 489, 5764
Ploner, S. R. O., Solanki, S. K., & Gadun, A. S. 2000, A&A, 356, 1050
Rasmussen, C. E., & Williams, C. K. I. 2005, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) (Cambridge, MA: The MIT Press)
Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, J. Astron. Teles. Instrum. Syst., 1, 014003
Salabert, D., Garcia, R. A., Palle, P. L., & Jimenez, A. 2011, J. Phys. Conf. Ser., 271, 012030
Salabert, D., García, R. A., Jiménez, A., et al. 2017, A&A, 608, A87
Savitzky, A., & Golay, M. J. E. 1964, Anal. Chem., 36, 1627
Schou, J., Scherrer, P. H., Bush, R. I., et al. 2012, Sol. Phys., 275, 229
Scuflaire, R., Théado, S., Montalbán, J., et al. 2008, Ap&SS, 316, 83
Seleznyov, A. D., Solanki, S. K., & Krivova, N. A. 2011, A&A, 532, A108
Shapiro, S. S., & Wilk, M. B. 1965, Biometrika, 52, 591
Simon, M. K. 2006, Probability Distributions Involving Gaussian Random Variables: A Handbook for Engineers, Scientists and Mathematicians (Berlin, Heidelberg: Springer-Verlag)
Stein, R. F., & Nordlund, A. 1989, ApJ, 342, L95
Svensson, F., & Ludwig, H.-G. 2005, ESA SP, 560, 979
Title, A. M., Tarbell, T. D., Topka, K. P., et al. 1989, ApJ, 336, 475