Giribaldi, J.; Institut des Biomolécules Max Mousseron, UMR 5247, Univ Montpellier, CNRS, Place Eugène Bataillon, Montpellier CEDEX 5, 34095, France
Kazandjian, T.; Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
Amorim, F. G.; Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium
Whiteley, G.; Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
Wagstaff, S. C.; Bioinformatics Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
Cazals, G.; Institut des Biomolécules Max Mousseron, UMR 5247, Univ Montpellier, CNRS, Place Eugène Bataillon, Montpellier CEDEX 5, 34095, France
Enjalbal, C.; Institut des Biomolécules Max Mousseron, UMR 5247, Univ Montpellier, CNRS, Place Eugène Bataillon, Montpellier CEDEX 5, 34095, France
Quinton, Loïc ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique
Casewell, N. R.; Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, United Kingdom
Dutertre, S.; Institut des Biomolécules Max Mousseron, UMR 5247, Univ Montpellier, CNRS, Place Eugène Bataillon, Montpellier CEDEX 5, 34095, France
Language :
French
Title :
Venomics of the asp viper Vipera aspis aspis from France
Jollivet, V., Hamel, J.F., de Haro, L., Labadie, M., Sapori, J.M., Cordier, L., Villa, A., Nisse, P., Puskarczyk, E., Berthelon, L., Harry, P., Boels, D., European viper envenomation recorded by French poison control centers: a clinical assessment and management study. Toxicon. 108 (2015), 97–103, 10.1016/j.toxicon.2015.09.039.
Audebert, F., Sorkine, M., Bon, C., Envenoming by viper bites in France: clinical gradation and biological quantification by ELISA. Toxicon. 30 (1992), 599–609, 10.1016/0041-0101(92)90854-x.
De Haro, L., Glaizal, M., Tichadou, L., Blanc-Brisset, I., Hayek-Lanthois, M., Asp viper (Vipera aspis) envenomation: experience of the Marseille poison centre from 1996 to 2008. Toxins. 1 (2009), 100–112, 10.3390/toxins1020100.
Calderón, L., Lomonte, B., Gutiérrez, J.M., Tarkowski, A., Hanson, L.A., Biological and biochemical activities of Vipera berus (European viper) venom. Toxicon. 31 (1993), 743–753, 10.1016/0041-0101(93)90380-2.
Samel, M., Siigur, J., Isolation and characterization of hemorrhagic metalloproteinase from Vipera berus berus (common viper) venom. Comp. Biochem. Physiol. C 97 (1990), 209–214, 10.1016/0742-8413(90)90129-w.
Komori, Y., Sugihara, H., Purification and physiological study of a hypotensive factor from the venom of Vipera aspis aspis (aspic viper). Toxicon. 28 (1990), 359–369, 10.1016/0041-0101(90)90073-g.
Komori, Y., Nikai, T., Sugihara, H., Isolation and characterization of procoagulant from the venom of Vipera aspis aspis. Int. J. BioChemiPhysics 25 (1993), 761–767, 10.1016/0020-711x(93)90363-j.
de Haro, L., Robbe-Vincent, A., Saliou, B., Valli, M., Bon, C., Choumet, V., Unusual neurotoxic envenomations by Vipera aspis aspis snakes in France. Hum. Exp. Toxicol. 21 (2002), 137–145, 10.1191/0960327102ht226oa.
Mancheva, I., Kleinschmidt, T., Aleksiev, B., Braunitzer, G., Sequence homology between phospholipase and its inhibitor in snake venom. The primary structure of phospholipase A2 of vipoxin from the venom of the Bulgarian viper (Vipera ammodytes ammodytes, Serpentes). Biol. Chem. Hoppe Seyler 368 (1987), 343–352, 10.1515/bchm2.1984.365.2.885.
Jan, V., Maroun, R.C., Robbe-Vincent, A., De Haro, L., Choumet, V., Toxicity evolution of Vipera aspis aspis venom: identification and molecular modeling of a novel phospholipase A2 heterodimer neurotoxin 1. FEBS Lett. 527 (2002), 263–268, 10.1016/S0014-5793(02)03205-2.
Ferquel, E., de Haro, L., Jan, V., Guillemin, I., Jourdain, S., Teynié, A., d'Alayer, J., Choumet, V., Reappraisal of Vipera aspis Venom neurotoxicity. PLoS ONE, 2, 2007, 10.1371/journal.pone.0001194.
Zanetti, G., Duregotti, E., Locatelli, C.A., Giampreti, A., Lonati, D., Rossetto, O., Pirazzini, M., Variability in venom composition of European viper subspecies limits the cross-effectiveness of antivenoms. Sci. Rep., 8, 2018, 9818, 10.1038/s41598-018-28135-0.
Lamb, T., de Haro, L., Lonati, D., Brvar, M., Eddleston, M., Antivenom for European Vipera species envenoming. Clin. Toxicol. 55 (2017), 557–568, 10.1080/15563650.2017.1300261.
Guiavarch, M., Médus, M., Tichadou, L., Glaizal, M., de Haro, L., Efficacité variable de l'antivenin Viperfav® pour traiter les envenimations vipérines avec neurotoxicité. Presse Med. 40 (2011), 654–656, 10.1016/j.lpm.2011.01.023.
Calvete, J.J., Lomonte, B., A bright future for integrative venomics. Toxicon. 107 (2015), 159–162, 10.1016/j.toxicon.2015.10.024.
Pla, D., Petras, D., Saviola, A.J., Modahl, C.M., Sanz, L., Pérez, A., Juárez, E., Frietze, S., Dorrestein, P.C., Mackessy, S.P., Calvete, J.J., Transcriptomics-guided bottom-up and top-down venomics of neonate and adult specimens of the arboreal rear-fanged Brown Treesnake, Boiga irregularis, from Guam. J. Proteome 174 (2018), 71–84, 10.1016/j.jprot.2017.12.020.
Calvete, J.J., Venomics: integrative venom proteomics and beyond. Biochem. J. 474 (2017), 611–634, 10.1042/BCJ20160577.
Pla, D., Sanz, L., Whiteley, G., Wagstaff, S.C., Harrison, R.A., Casewell, N.R., Calvete, J.J., What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the south African green tree snake (the boomslang), Dispholidus typus. Biochim. Biophys. Acta Gen. Subj. 1861 (2017), 814–823, 10.1016/j.bbagen.2017.01.020.
Ainsworth, S., Petras, D., Engmark, M., Süssmuth, R.D., Whiteley, G., Albulescu, L.-O., Kazandjian, T.D., Wagstaff, S.C., Rowley, P., Wüster, W., Dorrestein, P.C., Arias, A.S., Gutiérrez, J.M., Harrison, R.A., Casewell, N.R., Calvete, J.J., The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. J. Proteome 172 (2018), 173–189, 10.1016/j.jprot.2017.08.016.
Whiteley, G., Casewell, N.R., Pla, D., Quesada-Bernat, S., Logan, R.A.E., Bolton, F.M.S., Wagstaff, S.C., Gutiérrez, J.M., Calvete, J.J., Harrison, R.A., Defining the pathogenic threat of envenoming by south African shield-nosed and coral snakes (genus Aspidelaps), and revealing the likely efficacy of available antivenom. J. Proteome 198 (2019), 186–198, 10.1016/j.jprot.2018.09.019.
Archer, J., Whiteley, G., Casewell, N.R., Harrison, R.A., Wagstaff, S.C., VTBuilder: a tool for the assembly of multi isoform transcriptomes. BMC Bioinforma., 15, 2014, 389, 10.1186/s12859-014-0389-8.
Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M., Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 21 (2005), 3674–3676, 10.1093/bioinformatics/bti610.
Kumar, S., Stecher, G., Tamura, K., MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (2016), 1870–1874, 10.1093/molbev/msw054.
Gasteiger, E., ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31 (2003), 3784–3788, 10.1093/nar/gkg563.
Edgar, R.C., MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma., 5, 2004, 113, 10.1186/1471-2105-5-113.
Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G.A., Ma, B., PEAKS DB: De Novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics, 2011, 10.1074/mcp.M111.010587 mcp.M111.010587.
Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., Lajoie, G., PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17 (2003), 2337–2342, 10.1002/rcm.1196.
Amorim, F.G., Costa, T.R., Baiwir, D., De Pauw, E., Quinton, L., Sampaio, S.V., Proteopeptidomic, functional and immunoreactivity characterization of Bothrops moojeni snake venom: influence of snake gender on venom composition. Toxins., 10, 2018, 177, 10.3390/toxins10050177.
Degueldre, M., Verdenaud, M., Legarda, G., Minambres, R., Zuniga, S., Leblanc, M., Gilles, N., Ducancel, F., De Pauw, E., Quinton, L., Diversity in sequences, post-translational modifications and expected pharmacological activities of toxins from four Conus species revealed by the combination of cutting-edge proteomics, transcriptomics and bioinformatics. Toxicon. 130 (2017), 116–125, 10.1016/j.toxicon.2017.02.014.
Han, Y., Ma, B., Zhang, K., SPIDER: software for protein identification from sequence tags with de novo sequencing error. J. Bioinforma. Comput. Biol. 3 (2005), 697–716, 10.1142/s0219720005001247.
Zybailov, B., Mosley, A.L., Sardiu, M.E., Coleman, M.K., Florens, L., Washburn, M.P., Statistical analysis of membrane proteome expression changes in Saccharomyces c erevisiae. J. Proteome Res. 5 (2006), 2339–2347, 10.1021/pr060161n.
Lochner, A., Giannone, R.J., Keller, M., Antranikian, G., Graham, D.E., Hettich, R.L., Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass. J. Proteome Res. 10 (2011), 5302–5314, 10.1021/pr200536j.
Al Shweiki, M.R., Mönchgesang, S., Majovsky, P., Thieme, D., Trutschel, D., Hoehenwarter, W., Assessment of label-free quantification in discovery proteomics and impact of technological factors and natural variability of protein abundance. J. Proteome Res. 16 (2017), 1410–1424, 10.1021/acs.jproteome.6b00645.
Hoopmann, M.R., Winget, J.M., Mendoza, L., Moritz, R.L., StPeter: seamless label-free quantification with the trans-proteomic pipeline. J. Proteome Res. 17 (2018), 1314–1320, 10.1021/acs.jproteome.7b00786.
Sajevic, T., Leonardi, A., Križaj, I., An overview of hemostatically active components of Vipera ammodytes ammodytes venom. Toxin Rev. 33 (2014), 33–36, 10.3109/15569543.2013.835827.
Sanchez, E.F., Flores-Ortiz, R.J., Alvarenga, V.G., Eble, J.A., Direct fibrinolytic snake venom metalloproteinases affecting hemostasis: structural, biochemical features and therapeutic potential. Toxins, 9, 2017, 10.3390/toxins9120392.
Gutiérrez, J.M., Escalante, T., Rucavado, A., Herrera, C., Hemorrhage caused by snake venom metalloproteinases: a journey of discovery and understanding. Toxins, 8, 2016, 10.3390/toxins8040093.
Fry, B., (eds.) Venomous Reptiles and Their Toxins: Evolution, Pathophysiology, and Biodiscovery, 2015, Oxford University Press, New York, NY.
Sajevic, T., Leonardi, A., Kovačič, L., Lang-Balija, M., Kurtović, T., Pungerčar, J., Halassy, B., Trampuš-Bakija, A., Križaj, I., VaH3, one of the principal hemorrhagins in Vipera ammodytes ammodytes venom, is a homodimeric P-IIIc metalloproteinase. Biochimie. 95 (2013), 1158–1170, 10.1016/j.biochi.2013.01.003.
Latinović, Z., Leonardi, A., Šribar, J., Sajevic, T., Žužek, M.C., Frangež, R., Halassy, B., Trampuš-Bakija, A., Pungerčar, J., Križaj, I., Venomics of Vipera berus berus to explain differences in pathology elicited by Vipera ammodytes ammodytes envenomation: therapeutic implications. J. Proteome 146 (2016), 34–47, 10.1016/j.jprot.2016.06.020.
Serrano, S.M.T., The long road of research on snake venom serine proteinases. Toxicon. 62 (2013), 19–26, 10.1016/j.toxicon.2012.09.003.
Clemetson, K.J., Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon. 56 (2010), 1236–1246, 10.1016/j.toxicon.2010.03.011.
Ogawa, T., Chijiwa, T., Oda-Ueda, N., Ohno, M., Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. Toxicon. 45 (2005), 1–14, 10.1016/j.toxicon.2004.07.028.
Crocker, P.R., Paulson, J.C., Varki, A., Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7 (2007), 255–266, 10.1038/nri2056.
van den Berg, L.M., Gringhuis, S.I., Geijtenbeek, T.B.H., An evolutionary perspective on C-type lectins in infection and immunity: C-type lectins in infection and immunity. Ann. N. Y. Acad. Sci. 1253 (2012), 149–158, 10.1111/j.1749-6632.2011.06392.x.
Calvete, J.J., Marcinkiewicz, C., Monleón, D., Esteve, V., Celda, B., Juárez, P., Sanz, L., Snake venom disintegrins: evolution of structure and function. Toxicon. 45 (2005), 1063–1074, 10.1016/j.toxicon.2005.02.024.
Calvete, J.J., Moreno-Murciano, M.P., Theakston, R.D.G., Kisiel, D.G., Marcinkiewicz, C., Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem. J. 372 (2003), 725–734, 10.1042/BJ20021739.
Calvete, J.J., The continuing saga of snake venom disintegrins. Toxicon. 62 (2013), 40–49, 10.1016/j.toxicon.2012.09.005.
Gasmi, A., Srairi, N., Guermazi, S., Dkhil, H., Karoui, H., El Ayeb, M., Amino acid structure and characterization of a heterodimeric disintegrin from Vipera lebetina venom. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1547 (2001), 51–56, 10.1016/S0167-4838(01)00168-6.
Chen, H.-S., Wang, Y.-M., Huang, W.-T., Huang, K.-F., Tsai, I.-H., Cloning, characterization and mutagenesis of Russell's viper venom l-amino acid oxidase: insights into its catalytic mechanism. Biochimie. 94 (2012), 335–344, 10.1016/j.biochi.2011.07.022.
Yamazaki, Y., Morita, T., Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 44 (2004), 227–231, 10.1016/j.toxicon.2004.05.023.
Sunagar, K., Johnson, W.E., O'Brien, S.J., Vasconcelos, V., Antunes, A., Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol. Biol. Evol. 29 (2012), 1807–1822, 10.1093/molbev/mss058.
Ullah, U., Betzel, A., Rehman, U.R., The sequence and a three-dimensional structural analysis reveal substrate specificity among snake venom phosphodiesterases. Toxins., 11, 2019, 625, 10.3390/toxins11110625.
Schweitz, H., Bruhn, T., Guillemare, E., Moinier, D., Lancelin, J.M., Béress, L., Lazdunski, M., Kalicludines and kaliseptine. Two different classes of sea anemone toxins for voltage sensitive K+ channels. J. Biol. Chem. 270 (1995), 25121–25126, 10.1074/jbc.270.42.25121.
Dy, C.Y., Buczek, P., Imperial, J.S., Bulaj, G., Horvath, M.P., Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail. Acta Crystallogr. D Biol. Crystallogr. 62 (2006), 980–990, 10.1107/S0907444906021123.
Sasaki, S.D., Azzolini, S.S., Hirata, I.Y., Andreotti, R., Tanaka, A.S., Boophilus microplus tick larvae, a rich source of Kunitz type serine proteinase inhibitors. Biochimie. 86 (2004), 643–649, 10.1016/j.biochi.2004.09.010.
Strydom, D.J., Protease inhibitors as snake venom toxins. Nat. New Biol. 243 (1973), 88–89.
Yuan, C.-H., He, Q.-Y., Peng, K., Diao, J.-B., Jiang, L.-P., Tang, X., Liang, S.-P., Discovery of a distinct superfamily of kunitz-type toxin (KTT) from tarantulas. PLoS ONE, 3, 2008, 10.1371/journal.pone.0003414.
Yee, K.T., Pitts, M., Tongyoo, P., Rojnuckarin, P., Wilkinson, M.C., Snake venom metalloproteinases and their peptide inhibitors from Myanmar Russell's viper venom. Toxins, 9, 2016, 10.3390/toxins9010015.
Manjunatha Kini, R., Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 42 (2003), 827–840, 10.1016/j.toxicon.2003.11.002.
Georgieva, D., Risch, M., Kardas, A., Buck, F., von Bergen, M., Betzel, C., Comparative analysis of the venom proteomes of Vipera ammodytes ammodytes and Vipera ammodytes meridionalis. J. Proteome Res. 7 (2008), 866–886, 10.1021/pr070376c.
Pungercar, J., Krizaj, I., Liang, N.S., Gubensek, F., An aromatic, but not a basic, residue is involved in the toxicity of group-II phospholipase A2 neurotoxins. Biochem. J. 341 (1999), 139–145.
Krizaj, I., Liang, N.-S., Pungercar, J., Strukelj, B., Ritonja, A., Gubensek, F., Amino acid and cDNA sequences of a neutral phospholipase A2 from the long-nosed viper (Vipera ammodytes ammodytes) venom. Eur. J. Biochem. 204 (1992), 1057–1062, 10.1111/j.1432-1033.1992.tb16728.x.
Yamazaki, Y., Takani, K., Atoda, H., Morita, T., Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2). J. Biol. Chem. 278 (2003), 51985–51988, 10.1074/jbc.C300454200.
Komori, Y., Nikai, T., Taniguchi, K., Masuda, K., Sugihara, H., Vascular endothelial growth factor VEGF-like heparin-binding protein from the venom of Vipera aspis aspis (aspic viper) †. Biochemistry. 38 (1999), 11796–11803, 10.1021/bi990562z.
Sannaningaiah, D., Subbaiah, G.K., Kempaiah, K., Pharmacology of spider venom toxins. Toxin Rev. 33 (2014), 206–220, 10.3109/15569543.2014.954134.
Tobassum, S., Tahir, H.M., Zahid, M.T., Gardner, Q.A., Ahsan, M.M., Effect of milking method, diet, and temperature on venom production in scorpions. J. Insect Sci., 18, 2018, 10.1093/jisesa/iey081.
Dutertre, S., Jin, A.-H., Vetter, I., Hamilton, B., Sunagar, K., Lavergne, V., Dutertre, V., Fry, B.G., Antunes, A., Venter, D.J., Alewood, P.F., Lewis, R.J., Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat. Commun., 5, 2014, 10.1038/ncomms4521.
Haider, S., Pal, R., Integrated analysis of transcriptomic and proteomic data. Curr. Genomics 14 (2013), 91–110, 10.2174/1389202911314020003.
Casewell, N.R., Wagstaff, S.C., Wuster, W., Cook, D.A.N., Bolton, F.M.S., King, S.I., Pla, D., Sanz, L., Calvete, J.J., Harrison, R.A., Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proc. Natl. Acad. Sci. 111 (2014), 9205–9210, 10.1073/pnas.1405484111.
Al-Shekhadat, R.I., Lopushanskaya, K.S., Segura, Á., Gutiérrez, J.M., Calvete, J.J., Pla, D., Vipera berus berus venom from Russia: Venomics, bioactivities and preclinical assessment of microgen antivenom. Toxins., 11, 2019, 90, 10.3390/toxins11020090.
Reading, C.J., Incidence, pathology, and treatment of adder (Vipera berus L.) bites in man. Emerg. Med. J. 13 (1996), 346–351, 10.1136/emj.13.5.346.
Chippaux, J.-P., Epidemiology of snakebites in Europe: a systematic review of the literature. Toxicon. 59 (2012), 86–99, 10.1016/j.toxicon.2011.10.008.
Valenta, J., Stach, Z., Stříteský, M., Michálek, P., Common viper bites in the Czech Republic - epidemiological and clinical aspects during 15 year period (1999–2013). Prague Med. Rep. 115 (2014), 120–127, 10.14712/23362936.2014.42.
Garkowski, A., Czupryna, P., Zajkowska, A., Pancewicz, S., Moniuszko, A., Kondrusik, M., Grygorczuk, S., Gołębicki, P., Letmanowski, M., Zajkowska, J., Vipera berus bites in Eastern Poland – a retrospective analysis of 15 case studies. Ann. Agric. Environ. Med., 19, 2012, 6.
Malina, T., Krecsak, L., Warrell, D.A., Neurotoxicity and hypertension following European adder (Vipera berus berus) bites in Hungary: case report and review. QJM. 101 (2008), 801–806, 10.1093/qjmed/hcn079.
Magdalan, J., Trocha, M., Merwid-Ląd, A., Sozański, T., Zawadzki, M., Vipera berus bites in the region of Southwest Poland—a clinical analysis of 26 cases. Wilderness Environ. Med. 21 (2010), 114–119, 10.1016/j.wem.2010.01.005.
Warrell, D.A., Treatment of bites by adders and exotic venomous snakes. BMJ. 331 (2005), 1244–1247, 10.1136/bmj.331.7527.1244.
Slagboom, J., Kool, J., Harrison, R.A., Casewell, N.R., Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmaceutical promise. Br. J. Haematol. 177 (2017), 947–959, 10.1111/bjh.14591.
Casewell, N., Al-Abdulla, I., Smith, D., Coxon, R., Landon, J., Immunological cross-reactivity and neutralisation of European viper venoms with the Monospecific Vipera berus Antivenom ViperaTAb. Toxins. 6 (2014), 2471–2482, 10.3390/toxins6082471.